Уравнения и неравенства
\frac{log_{2x-1}^{2}(9x^{2}-12x+4) - 10log_{2x-1}(3x-2)+18}{3log_{2x-1}(6x^{2}-7x+2)-2} \leq 2.
[/m]
\frac{4^{\sqrt{x-1}} - 5 \cdot 2^{\sqrt{x-1}} + 4}{\log_{2}^2 (7 - x)} \geq 0.
[/m]
\frac{(2^x - 2)^3}{2^{x+2} - 12} \geq \frac{8^x - 4^{x+1} + 2^{x+2}}{9 - 4^x}
[/m]
[m]\frac{(x^2 + x) \log_8(x^2 + 4x - 4)}{|x - 2|} \geq \frac{\log_8 (-x^2 - 4x + 4)^6}{x - 2}.[/m]
[-2π, -π/2]
log₂(17x² + 16) - log₂(x² + x + 1) ≥ log₂(x / (x + 10) + 16)
log(1/3) (3x - 1) / (x + 2) < 1
[m]\frac{\log_3 x}{\log_3 \left(\frac{x}{81}\right)} + \frac{3}{\log_3 x} + \frac{8}{\log_3^2 x - \log_3 x^4} \geq 0 [/m]
log(12)(x - 3) - log(x-2)(x - 5) + 1/log(x-5)12 ≥ log(x-2)(x - 3).
[block](log5 (25x^2) + 48)/(log^2_5 x - 49) >= -1[/block]
[block](2^x)/(2^x - 16) + (2^x + 16)/(2^x - 4) + (258)/(4^x - 20 * 2^x + 64) ≤ 0[/block]
|x^2 - (29/12)x - 35/12| ≥ 2x^2 - (61/12)x - 19/12
[block](4^(x^2 - 2x) - 16 · 2^((x - 1)^2) + 35)/(1 - 2^((x - 1)^2)) ≤ 4^x · 2^((x - 2)^2)[/block]
[block](30 * 5^(x+3) - 0.2^(x+1))/(5^(3-x) - 25^(1-x)) ≥ 5^(x-3)[/block]
[block](x + (3)/(x)) * ((sqrt(x^2 - 6x + 9) - 1)/(sqrt(5 - x) - 1))^2 ≥ 4 * ((sqrt(x^2 - 6x + 9) - 1)/(sqrt(5 - x) - 1))^2[/block]
[block](9^x-3^x+2)/(9^x-3^x)+(5*3^x-19)/(3^x-4) ⩽ (2*3^(x+1)-2)/(3^x)[/block]
[block](10^x-25*2^x-2*5^x+50)/(5x-x^2-4) ≥ 0[/block]
[block]log((x-2)^2) (5-x)/(4-x) ≤ 1 + log((x-2)^2) (1)/(x^2 - 9x + 20)[/block]
[block](4x^4 - 4x^3 + x^2)/(-2x^2 + 5x - 2) + (2x^3 - 7x^2 + 5x + 1)/(x - 2) ≤ 0[/block]
[block](log_5 (x^2 - 2x))/(log_5 x^4) ≥ 0,25[/block]
[block](x-8x+11)/(x-6) + (x^2-9x+2)/(x-9) <= 2x-2 [/block]
[block](log^2_(x-2) (6-x))/(x^2-10x-24) >= 0[/block]
[block](log_3 (9x) - 13)/(log^2_3 x + log_3 x^4) ≤ 1[/block]
б) Укажите его корни, принадлежащие отрезку [9Pi/2; 6π].
[block](3^(x+1))/(3*2^x-2*3^x)-(3^x)/(2^x-3^x) >= 0[/block]
log(15)(x+5) + log(15)(x^2 + 1/(x+5)) ≤ 2log(15)(x^2 + x + 5)/2
log3(x+7)+(1/6)log3(x+1)^6 ≥ 2
log(25)(5^x-1)*log5(5^(x+2)-25) < 4
[block]log2((7^(-x^2)-6)(7^(-x^2+9)-1)) + log2 (7^(-x^2)-6)/(7^(-x^2+9)-1) > log2(7^(3-x^2)-5)^2[/block]
3log4(x^2+5x+6) ≤ 5 + log4((x+2)^3/(x+3))
log(x+2) (7x^2 + 11x - 6) < 2
{ 5^(log5(x-y)) = 1
{ 3^x-3^(y) = 6log2 8
|x^3 - 2x^2 + 2| ≥ 2 - 3x
[block](log2 x)/(log2 (4x + 7)) ≤ 1[/block]
[block](log2 (4x+3) * log5 (2x+5))/(log3 (6x) * log4 x) ≥ 0[/block]
[block](log_(x+3)(x^2 - x + 30))/(log_(x+3)(x^2 - x - 1)) ≥ (lg(x^4 - 2x^2 + x^2))/(lg(x^2 - x - 1))[/block]
(2^x + 3*2^(-x))^(2log2x-log2(x+6)) > 1
(2x+1)log5 10 + log5(4^x - 1/10) ≤ 2x-1
[m](x-4)(\log_{5}{(125-25x)}-\log_{6}{(x^2+x-6)}+\frac{1}{\log_{(5-x)}{0,2}}+x+6) ≤ x^2+2x-24[/m]
(x^2-7x+12)*log(x-2)(x-3)*ln(x-6)^2 / 2x^2-11x+14 ≤ 0
[block](log4(2-x)-log_(14)(2-x))/(log_(14)x-log(49)x) ≤ log4 49[/block]
sqrt(x+(2/3))(log2log(1/2)|1+x|) ≤ 0
log5(x+2)^2*log(1/2)x^2 - 4log5(x+2) + 4log2(-x) + 4 ≤ 0
log^2_3(-log3x) + log3log^2_3x ≤ 3
[block](sqrt(4x-x^2-3))/(x+5) меньше или равно (sqrt(4x-x^2-3))/(2x+3)[/block]
[block]log(|x+3|) (2x+6)/(|x|) ≤ 1[/block]
[block](1+sqrt(6+5x-4x^2))/(log(3x+3)7) ≥ 0[/block]
[block](6)/(3-sqrt(log2(x+12))) больше или равно 2+sqrt(log2(x+12))[/block]
[m]\frac{1}{\log_6(7-5x^2)}+2 = \log_{7-5x^2}(49-25x^4)[/m]
27*45^x - 27^(x+1) - 12*15^x + 12*9^x + 5^x - 3^x ≤ 0
log(11)(8x^2+7)-log(11)(x^2+x+1) больше или равно log(11)((x/(x+5))+7)
[block](2*3^(2x+1) - 7*6^x + 2*4^x)/(3*9^x-3^x*2^(x+1)) ≤ 1[/block]
[block](log2(4x^2)+35)/(log^2_2x - 36) ≥ -1[/block]
[block](log(x)(2x^(-1))*log(x)(2x^2))/(log(2x)x*log(2x^(-2))x) < 40[/block]
[block](4^x-2^(x+3)+7)/(4^x-5*2^x+4) ≤ (2^x-9)/(2^x-4) + (1)/(2^x-6)[/block]
[m]3^x+\frac{2*3^{x+1}}{3^x-3}+\frac{9^x+26*3^x+21}{9^x-4*3^{x+1}+27} ≤ 1[/m]
[m]\log^2_5 \frac{(x-4)^2(x-3)}{48} > \log^2_{0,2} \frac{x-3}{3}[/m]
[m]125^x-25^x+\frac{4*25^x-20}{5^x-5} ≤ 4[/m]
[block]((x^2+9x+20)*log(x+6)(x+5)*lg(x+2)^2)/(2x^2+21x+54) ≤ 0[/block]
log(10-x^2)([m]\frac{16}{5}[/m]x-x^2) < 1
[m]\frac{2\log_5(x^2-5x)}{\log_5x^2} \leq 1[/m]
[m]\frac{(x^2-x-14)^2}{2x+\sqrt{21}} \leq \frac{(2x^2+x-13)^2}{2x+\sqrt{21}} [/m]
log2(x-1)(x^2+2) ≤ 1+log2(x^2+3x-4) - log2x
(2-3x)log(2x-1)(x^2-2x+2) ≤ 0
[m]\frac{lg(3x^2-3x+7)-lg(6+x-x^2)}{(10x-7)(10x-3)} \geq 0[/m]
[block]3^(x^2-4x-5)+log3 (x - 3)/(6) меньше или равно 0[/block]
log(x+1)(x-1)*log(x+1)(x+2) ≤ 0
log4(6-6x) < log4(x^2-5x+4) + log4(x+3)
log3(x^2-x-3)+log3(2x^2+x-3) ≥ log3(x^2-2)^2+2+log(1/3)4
log(1/10)(6-6x) ≥ log(1/10)(x^2-4x+3) + log(1/10)(x+4)
(1/3)^((7x-x^2-9)/x) - 4*(1/15)^((7x-x^2-9)/x) больше или равно 5*(1/75)^((7x-x^2-9)/x)
7^(ln(x^2-2x)) ≤ (2-x)^(ln7)
5log(16)(x^2+4x-5) ≤ 6+ log(16)(x+5)^5/(x-1)
log(625x) 25 * log^2 (1/5) (25x) ≤2
(log 25 по основанию 625х * log в квадрате 25х по основанию 1/5 ≤2)
log2(x+1)^2*log(1/3)x^2 - 4log2(x+1) + 4log3(-x) + 4 ≤ 0
log(2x+1) (4x-5) + log(4x-5)(2x+1) ≤ 2
log(4-x) ((x-4)^8) / (x+5) ≥ 8
log3 (9x) - 13/ log3^2 x + log3 x^4 ≤ 1
(64^x-7*16^x) /(4^x +1) +(6*16^x - 3*4^(x+2) ) /(4^x- 6) +42>=0
log(x) (x+1)/(12x) > 2log((x+1)/12) x [L15]
log((2x+2)/(5x-1)) (10x^2+x-2) ≤ 0
log(1+1/(x+1)^2) (x^2+3x+2 / x^2-3x+4) ...
log(1/3)(x^2-3x-1) + log(1/3)(2x^2-3x-2) ≤ log(1/3)(x^2-2x-1)^2 + log34 - 2
5^(x+2) + 5^(x+1) - 5^x < 3^((x/2) + 1) - 3^(x/2) - 3^((x/2) - 1)
log2(8x^2) + 2log2x + 12 ...
log(1,5x+1)(3x+7)*log(1+(3x/2))((24x+56)/(3x+2)^3) меньше или равно -2
log^2_(0,5) (4x) * log(0,25) (0,25x)^2 ≤ log(0,5)5*log5(x/4)
(log(2^(x+4)) 4) / (log(2^(x+4)) (-8x)) меньше или равно 1/(log2log(1/2) 2^x)
3) log(1/3)(x^2+3x-1) < -1
log2(x+2)-log2(x-1) < 1-log2(5-x)
log2(3-2x) + 2log2(1/x) ≤ log2((1/x^2) - 2x + 2)
log^2_(2)(3x-1) + log^2_(3x-1)2 - log2(3x-1)^2 - log_(3x-1)4 + 2 меньше или равно 0
log(sinx+cosx+4) (x^2+1) ≥ log(2sinx*cosx+4,5) (x^2+1)
5lg(x^2+3x+2) меньше или равно 6+lg((x+2)^5/(x+1))