✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 33544 Решить неравенство

УСЛОВИЕ:

Решить неравенство log2(2^x-1)*log(1/2)(2^(x+1)-2) > -2

Добавил vk177899689, просмотры: ☺ 156 ⌚ 2019-02-13 14:27:19. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

ОДЗ: 2^(x)-1 > 0
2^(x)> 1
2^(x)> 2^(0)
x>0

ОДЗ: х > 0

Применяем свойства логарифмов:
log_(1/2)(2^(x+1)-2)=log_(1/2)2*(2^x-1)= логарифм произведения
= log_(1/2)2+log_(1/2)(2^x-1) =
формула перехода к другому основанию ( к основанию 2)

= - 1 - log_(2)(2^(x)-1)

log_(2^x-1)*(-1-log_(2)(2^(x)-1) > -2

Квадратное неравенство
log_(2)(2^(x)-1)=t

t*(-1-t)>-2
t*(t+1) < 2

t^2+t-2 <0
D=9
t_(1)=(-1-3)/2=-2; t_(2)=(-1+3)/2=1
-2 < t < 1

Значит

-2 < log_(2) (2^(x)-1) < 1

log_(2)(1/4) < log_(2) (2^(x)-1) < log_(2)2

Логарифмическая функция с основанием 2 возрастающая, поэтому

(1/4) < 2^(x)-1< 2

(1/4)+1 < 2^(x) < 3

2^(log_(2)(5/4)) < 2^(x) < 2 ^(log_(2) 3)

log_(2)(5/4) x< x < log_(2)3
О т в е т. (log_(2)(5/4);log_(2)3)

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ u821511235

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 52865
Если выплаты 2030 и 2031 года равные, то

A=338 000/2=169 000,

уравнение принимает вид:

169 000+1,3·(1,3S–169 000)=338 000 ⇒

1,69·S=2,3·169 000 ⇒

S=230 000

Cумма выплат: 0,3S+0,3S+0,3S+338 000= 0,9·230 000+338 000=

545 000

(прикреплено изображение)
✎ к задаче 52860
Пусть сумма кредита равна S руб.

В январе 2021 года начислены проценты: 0,35*S руб.
Сумма долга составила S + 0,35S=1,35*S руб
Пусть ежегодные [i] равные[/i] выплаты равны А руб.

[b](1,35*S- A )[/b] руб. -[i] остаток[/i] на конец первого года

В январе 2022 года начислены проценты [i]на остаток[/i]:
0,35*(1,35*S-А) руб.

Сумма долга составила (1,35*S- A )+0,35*(1,35*S-А)=
[b]1,35*(1,35*S-А) руб[/b]

(1,35*(1,35*S- A ) - А ) =(1,35^2*S-1,35*A-A) руб.- остаток на конец второго года
Аналогично получаем:

1,35*(1,35^2*S-1,35*A-A) -А= (1,35^3*S-1,35^2*A-1,35*A-A) руб. - остаток на конец третьего года, который по условию равен 0 ( кредит выплачен)

Уравнение:
[b]1,35^3*S-1,35^2*A-1,35*A-A=0[/b]

Условие "общая сумма выплат на 78 030 рублей больше суммы, взятой в кредит" позволяет составить второе уравнение:

[b]3А=S+78030[/b]

Решаем систему двух уравнений с двумя неизвестными S и А:

\left\{\begin{matrix} 1,35^3\cdot S-1,35^2\cdot A-1,35\cdot A-A=0\\ 3A=S+78030 \end{matrix}\right.

\left\{\begin{matrix} 1,35^3\cdot S-(1,35^2+1,35+1)\cdot (\frac{S}{3}+26010)=0\\ A=\frac{S}{3}+26010 \end{matrix}\right.

Удобнее считать в обычных дробях:

1,35=\frac{135}{100}=\frac{27}{20}

Решаем первое уравнение:

\frac{27^3}{20^3}\cdot S-(\frac{27^2}{20^2}+\frac{27}{20}+1)\cdot (\frac{S}{3}+26010)=0

\frac{27^3}{20^3}\cdot S-(\frac{27^2}{20^2}+\frac{27}{20}+1)\cdot \frac{S}{3}=(\frac{27^2}{20^2}+\frac{27}{20}+1)\cdot 26010

S\cdot (\frac{27^3}{20^3}-\frac{1669}{400}\cdot \frac{1}{3})=\frac{1669}{400}\cdot 26010

S\cdot \frac{59049-33380}{20^3\cdot 3}=\frac{1669}{400}\cdot 26010

S\cdot 25669=1669\cdot 60\cdot 26010


[b]Для случая 30% :[/b]



Решаем систему двух уравнений с двумя неизвестными S и А:

\left\{\begin{matrix} 1,3^3\cdot S-1,3^2\cdot A-1,3\cdot A-A=0\\ 3A=S+78030 \end{matrix}\right.

\left\{\begin{matrix} 1,3^3\cdot S-(1,3^2+1,3+1)\cdot (\frac{S}{3}+26010)=0\\ A=\frac{S}{3}+26010 \end{matrix}\right.

Решаем первое уравнение:

2,197\cdot S-3,99\cdot\frac{S}{3}=3,99\cdot 26010

(2,197-1,33)\cdot S=3,99\cdot 26010

0,867\cdot S=3,99\cdot 867\cdot 30

S=\frac{3,99\cdot 30\cdot 0,867\cdot 1000}{0,867}=119 700 руб.

✎ к задаче 52865
Испытание состоит в том, что из 8 студентов выбирают двух.

Это можно сделать

n=C^2_(8)=8!/(2!*(8-2)!)=28 способами

Событие А-"турист Б., входящий в состав группы, пойдет в магазин"

Событию А благоприятствуют

m=C^(1)_(1)*C^(1)_(7)=7 способов

По формуле классической вероятности:

p(А)=m/n=7/28=[b]1/4[/b]
✎ к задаче 52864
(прикреплено изображение)
✎ к задаче 52795