✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

задание 13

О категории

Тригонометрические уравнения, отбор корней.

Теория

Отбор корней в тригонометрическом уравнение
Разбор задания 13 профильного ЕГЭ по Математике

Практика

Зарегистрируйтесь и система сможет запоминать Ваши ответы.
a) Решите уравнение -cos2x+sqrt(2)cos(Pi/2+x)+1 = 0

б) Отберите корни из данного отрезка [2Pi; 3,5Pi]
а) Решить уравнение [m](\frac{1}{10})^{\sqrt{3}sin(\frac{\pi}{2}-x)} = 10^{sin(2\pi-x)}[/m]

б) Укажите корни этого уравнения, принадлежащие отрезку [m][-\frac{9\pi}{2}; -3\pi][/m]
a) Решить уравнение 4sin^2x-3sinx*cosx-cos^2x = 0

б) Найти все корни этого уравнения, принадлежащие промежутку [0; Pi/4]
а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корни на промежутке [Pi/2; 2Pi]
а) Решить уравнение log(-cosx)(1-0,5sinx) = 2

б) Отобрать корни на отрезке [14Pi; 16Pi]
а) Решите уравнение [m]\frac{\sqrt{3}tgx+1}{2sinx-1}=0[/m]

б) Найдите корни, принадлежащие отрезку [m][\frac{9\pi}{2}; 6\pi][/m]
а) [m]\frac{sinx-sin^2x}{4cos^2\frac{x}{2}} = 0[/m]

б) [-6Pi; -9Pi/2]
9^(cosx) + 9^(-cosx) = 10/3

[2Pi; 7Pi/2]
а) Решить уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1,

б) Отобрать корни на отрезке [-7Pi/2; -2Pi]
а) Решите уравнение tg^2x+5tgx+6=0
б) Найдите корни этого уравнения, принадлежащие промежутку [–2π;–π/2]
решите уравнение 4cos^2 x + 8sin (3П/2 - x) - 5 = 0
и укажите корни этого уравнения принадлежащие отрезку [-7П/2; -2П]
решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin^3 (x + 3П/2) + cosx = 0
[5П/2; 4П]
решите уравнение и укажите корни этого уравнения принадлежащие отрезку
2√2sin (x + П/3) + 2cos^2 x = √6cosx + 2
[-3П; -3П/2]
решите уравнение и укажите корни этого уравнения принадлежащие отрезку
√2sin (x + П/4) + cos(2x) = sinx - 1
[7П/2; 5П]
решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin (2x + П/6) + cosx = √3 sin(2x) - 1
[4П; 11П/2]
решить уравнение и указать корни этого уравнения принадлежащие отрезку
2cos^3 x = sin (П/2 - x)
[-4П; -5П/2]
решить уравнение и указать корни этого уравнения принадлежащие отрезку
8sin^2 x - 2√3cos (П/2 - x) - 9 = 0
[-5П/2; -П]
решить уравнение и указать корни этого уравнения принадлежащие отрезку
cos2x + √2sin (П/2 + x) + 1 = 0
[2П; 7П/2]
а) Решите уравнение (6/5)^(cos3x)+(5/6)^(cos3x) = 2,

б) Укажите корни этого уравнения, принадлежащие промежутку [4Pi; 9Pi/2)
(sinx+cosx)sqrt(2) = tgx+ctgx, [-Pi; Pi/2]
а) Решите уравнение log(1,75)(2-sin^2x-sinx-cos2x) = 1

б) Отобрать корни на отрезке [-7Pi/2; - 2Pi]
а) Решите уравнение tg(2Pi-x)cos(3Pi/2 + 2x) = sin(-Pi/2)

б) Укажите корни этого уравнения, принадлежащие [2Pi; 7Pi/2]
а) Решите [m]log^2_{2x} (4x^3) -2 = log_{2x} (4x)[/m]

б) Отбор корней на промежутке [m] [\frac{1}{2}; \frac{1}{\sqrt[10]{2}}] [/m]
а) Решите уравнение 8sinx+4cos^2x = 7;

б) Найдите корни на отрезке [-3Pi/2; -Pi/2]
a) Решите уравнения cos^2(x/2)-sin^2(x/2) = sin((Pi/2)-2x)

б) Укажите корни уравнения, принадлежащие отрезку [Pi; 5Pi/2]
[block]а) Решить уравнение (cos^2x+sqrt(3))/(sqrt(3)cos^2x) = (sqrt(3)+4)/(2sqrt(3)cosx)[/block]

б) Найдите корни на промежутке [-1;3]
Решите уравнение sin2x=cos(pi/2-x)
Найти все корни на промежутка [-Pi;0]
Решить уравнения 2sin^2x-5sinxcosx+2cos^2x=0
Выбрать корни принадлежащие [Pi/2;3Pi/2]
Решите уравнение cos4x-cos2x=0
Укажите корни, принадлежащие отрезку [Pi/2;2Pi]
2cos^2x+2sqrt(2)cos(п/2-x)+1=0;
Корни на промежутке [3п/2;3п]
1) Решите уравнение 2sin^2x - 3sqrt(2)sin (3Pi/2) - 4 = 0

2) Найдите корни, принадлежащие отрезку [Pi; 5Pi/6]
Решите неравенство 2sin^2x-2√2cos+1=0
корни на промежутке [5п/4 4п]
2sin²x+3√2cos(3π/2+x) +2 =0
a) Решите уравнение sqrt(x^(2)-2x+1) + sqrt(x^(2)+2x+1) = 2

б) Отбор корней на промежутке [1;2]
(Cos(x)-1)*(ctg(x)+0,5)=0
Решить уравнение ,Сколько корней на промежутке
(-pi/2; 3pi/2)
Найти корень уравнения 3+2sin2x=tgx+ctgx, принадлежащий интервалу (50°;90°)
25^log5(sinx)+0,5*2^log4(cos^2x)=1
а) Решить уравнение [m]3cos\frac{x}{4}cos\frac{x}{2}sin\frac{x}{4} = \frac{1-ctgx}{1-ctg^2x}[/m]

б) Укажите корни, принадлежащие интервалу (-2Pi; -3Pi/2)
3log^2(8)(sinx) - 5log(8)(sinx) - 2
[-7π/2; 2π]
Решить уравнение
(tg ^2 x -2 tgx-3)*log5(-2sinx)
Отберите корни на отрезке [П/2;3П]
а) Решите уравнение (3ctg^2x+4ctgx)/(5cos^2x–4cosx)=0
б) отберите корни на промежутке [5п/2;5п]
Пожалуйста с отбором корней подробнее
а) Решите уравнение (log^2_(2)(sinx)+log2(sinx)) / (2cosx+sqrt(3))=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0;  3π/2]
ctgx - 2cos(П/2 - 2x) = 0
Условие [ - П; П/2 ]
а) Решите уравнение 2/(tg^2x+1) = 3sin(3Pi+2x)

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2; Pi]
а) Решите уравнение (sin2x-2cosx)*log2(log(1/3)(x+5)) = 0 [Л13]

б) Укажите корни этого уравнения, принадлежащие промежутку (-3Pi/2; 0)
а) Решите уравнение 20^(cosx)=4^(cosx)⋅5^(−sinx).

б) Найдите все корни этого уравнения, принадлежащие отрезку [−9π/2;−3π].
а) Решите уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отбор корней на отрезке [-7Pi/2; -2Pi]
а) Решить 2*9^x-11*6^x+3*4^(x+1) = 0,

б) Отбор корней: [0, 3]
а) Решить уравнение 8^(2sqrt(3)cosx) = 64^(sin2x),

б) Отбор корней на отрезке [2Pi; 7Pi/2]
а) Решить уравнение sqrt(x^3-4x^2-10x+29) = 3-x,

б) Отбор корней [-sqrt(3); sqrt(30)]
(1+tg^2x)cos(Pi/2+2x) = 2/sqrt(3), [-3Pi/2; Pi]
tg(Pi+x)cos(2x-Pi/2)=cos(-Pi/3), [7Pi; 17Pi/2]
tg(Pi-x)cos((3Pi/2) - 2x) = sin(5Pi/6), [-2Pi; -Pi/2]
sinx=sqrt((1-cosx)/2), [2Pi; 7Pi/2] [v8-13]
Решите уравнение 2sinx*sin3x=cos2x, и найдите корни из промежутка (0;П)
а) log(sinx) (1+cos2x+cos4x) = 0

б) Укажите решение уравнения принадлежащее отрезку [0; Pi]
а) Решите уравнение 2ctg^(2)x = 3/sinx

б) Отобрать корни [0, 2π)
а) Решить уравнение tg^2x+1 = 1/cos((3Pi/2)+2x)

б) Отобрать корни на отрезке [-Pi/2; 5Pi/2]
а) Решить уравнение 2sin(x+Pi/6)-2sqrt(3)cos^2x = cosx-2sqrt(3)

б) Отобрать корни на отрезке [-5Pi/2; -Pi]
а) Решить уравнение (1+2sinx)sinx = sin2x+sin(Pi/2-x)

б) Отбор корней на отрезке [-3Pi/2; 0]
sqrt(2cos^2x-sqrt(2))+sqrt(2)sinx = 0, [-7Pi; -11Pi/2] (л13)
а) Решить уравнение 2cos^2x = sin(Pi/2-x)

б) Отбор корней на отрезке [5Pi/2; 4Pi]
а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корней на отрезке [Pi/2; 2Pi]
а) Решить уравнение sqrt(3)sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отобрать корни на отрезке [-3Pi; -3Pi/2]
a) Решите уравнение sqrt(4cos2x-2sin2x)=2cosx
б) Укажите корни этого уравнения, принадлежащие отрезку [-13Pi/6; -Pi/2]
а) Решить уравнение: (sin(Pi-x))/(2sin^2(x/2)) = 2cos^2(x/2)

б) Сделать отбор корней на отрезке [7Pi/2;5Pi]
а) Решите уравнение 2/(tg^2x+1)=3sin(3Pi+2x).

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2 ; Pi].
а) Решить уравнение 9*81^(cosx)-28*9^(cosx)+3 = 0,

б) Отбор корней на отрезке [5Pi/2; 4Pi]
а) Решите уравнение: 4cos2x=2cos(Pi/2-x)+1

б) Выполните отбор корней: [-3Pi/2; Pi/2]
а) Решить уравнение sin2x / sin(3Pi/2-x) = sqrt(2)

б) Отбор корней на отрезке [2Pi; 7Pi/2]
а) Решите уравнение (25^(sin2x)-5^(2sqrt(2)sinx))/sqrt(17sinx) = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]
а) Решить уравнение 16^(sin(2x+Pi/4)) =4^(sqrt(2)(sin2x+tgx*ctgx))*16^(sinx)

б) Отобрать корни на отрезке [3Pi/2; 3Pi]
а) Решите уравнение: sqrt(2)sin(2x-Pi/4)-sqrt(3)sinx = sin2x+1

б) Выполнить отбор корней: [-3Pi/2; 0]
а) Решить уравнение cos4x+sin2x = 0,

б) Выполнить отбор корней на промежутке 90°< x< 180°
а) Решить уравнение sin2x=2sinx-cosx+1

б) Выполнить отбор корней на отрезке [-2Pi;-Pi/2]
а) Решить уравнение:36^(2cosx+1)+16*4^(2cosx-1)=24*12^(2cosx)

б) Выполнить отбор корней: [-Pi/2;0]
a) Решите уравнение sin(2x+Pi/6) = cosx+cos(x+Pi/6)sinx

б) Определите, какие из его корней принадлежать отрезку [-5Pi; -7Pi/2]
а) Решить уравнение: 2cos(x-3Pi/2)+sqrt(2)cosx = sin2x-sqrt(2)

б) Укажите корни этого уравнения, принадлежащие отрезку [-5Pi;-7Pi/2]
а) Решите уравнение 3-2cos^2x+3sin(x-Pi) = 0

б) Найдите корни этого уравнения, принадлежащие промежутку [7Pi/2; 11Pi/2)
а) Решите уравнение 9*3^(2cosx)-10sqrt(3)*3^(cosx)+3 = 0

б) Укажите корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]
а) Решите уравнение cos^2x+4cos^23x+4cos3xcosx-6cosx-12cos3x=-9

б) Найдите решения уравнения, принадлежащие промежутку [2015Pi; 2017Pi]
а) Решите уравнение cos^25x+2cos5xsin(x-Pi/10)+1=0

б) Найдите решения уравнения, принадлежащие промежутку [2016Pi; 2017Pi].

Редакторы

slava191
Создатель
u821511235
Модератор
sova
Модератор
Ваша статистика
Заданий выполнено: 0 из 82