Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

задание 13 (уравнение, отбор корней)

О категории

Тригонометрические уравнения, отбор корней.

Теория (1)

Разбор задания 13 профильного ЕГЭ по Математике

Вообще в задании 13 дают не только тригонометрию, так что на видео также рассмотрены и другие...

Практика (171)

а) [block](cos2x + sqrt(3)cosx +1)/(ctgx + sqrt(3)) = 0[/block]

б) [ -π ; π/2 ]

а) Решите уравнение cosx = sqrt((1 + sin x) / 2)

б) Найдите его корни, принадлежащие отрезку [3π; 9π/2].

a) Решите уравнение [m] \left( \frac{1}{49} \right)^{\cos(x + 2 \pi)} = 7^{\cos \left( \frac{\pi}{2} - 2x \right)} [/m]

б) Укажите корни этого уравнения, принадлежащие отрезку [m]\left[ -\frac{\pi}{2}; \frac{3\pi}{2} \right] [/m]

а) Решите уравнение sinx = sqrt((1 - cos x)/2)

б) Найдите его корни, принадлежащие отрезку [2π; 7π/2].

[block](2sin^2x + sinx)/(2cosx - √3)= 0[/block]

Корни этого уравнения, принадлежащие отрезку [- 3π/2 ;0]

а) Решите уравнение 2 log^2_3(2sinx) + log3(2sinx) - 1 = 0.

б) Укажите корни этого уравнения, принадлежащие промежутку [-π; π/2].

а) sin2x-cos(x-Pi) = 0
б) [7Pi/2; 5Pi]

а) sin2x-sqrt(3)cos(Pi-x) = 0
б) [-4Pi; -5Pi/2]

а) Решите уравнение cos x = sqrt((1 + sin x)/2).

б) Найдите его корни, принадлежащие отрезку [3π; 9π/2].

Дано уравнение (sinx + sin3x) / cos x = 1.

А) Решите уравнение.

Б) Укажите корни этого уравнения, принадлежащие отрезку [1/4; 13/4].

a) Решите уравнение 2sqrt(2)cos^2(3π/2 + x) - sin 2x = 0.

б) Найдите корни этого уравнения, принадлежащие промежутку [2π, 7π/2].

а) Решите уравнение:

[m] \frac{2}{\sqrt{3}} ( \text{tg } x - \text{ctg } x) = \text{tg}^2x + \text{ctg}^2x - 2. [/m]

б) Укажите его корни, принадлежащие промежутку [m] \left( -777 π, -1551π/2 \right] [/m].

a) log4(2^(2x) - sqrt(3)cosx - sin2x) = x

b) [-π/2; 3π/2]

а) Решите уравнение (49^(sinx))^(cosx) = 7^(sqrt(3)sin x).

б) Найдите его корни, принадлежащие отрезку [ -3π/2 ; -5π/2 ]

a) Решите уравнение 4sin^3x = cos(x - 5π/2).

б) Укажите корни этого уравнения, принадлежащие отрезку [3π/2; 5π/2].

Решите неравенство: [block] (log(x)2x^(-1)*logx 2x^2)/(log(2x)x * log(2x^(-2)) x) < 40 [/block]

Решите уравнение sin 2x + 2 cos^2 x + cos 2x = 0.

Найдите корни этого уравнения, принадлежащие отрезку [ -9π/2; -3π ].

а) Решите уравнение

2 log₃² (8 sin x - √3) - 7 log₃ (8 sin x - √3) + 6 = 0.

б) Найдите все корни этого уравнения, принадлежащие промежутку [ -3π ; -3π/2 ].

а) [block](sinx)/(cos^2(x/2)) = 4sin^2(x/2)[/block]

б) [-5Pi; -3Pi]

а) Решите уравнение: [m] \frac{1}{ \sin x } + \frac{1}{ \cos x } = 2 \sqrt{2}[/m]

б) Найдите все корни уравнения на отрезке [m][- \frac{ \pi}{3 }; \pi][/m].

а) Решите уравнение: (2sinx – 1)(sqrt(–cos x) + 1) = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [3π/2 ; 3π].

Решите неравенство: log₂²(−log₂x) + log₂ log₂²x ≤ 3.

a) Решите уравнение 2log₂²(2 sin x) - 11log₂(2 sin x) + 5 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [3π/2, 3π].

а) Решите уравнение sin^2 x - 0,25 = sin(3π/2 + x).

б) Укажите корни этого уравнения, принадлежащие промежутку [-π; 5π].

а) Решите уравнение 2^(4sin x) + 5·2^(2sin x) — 14 = 0.

б) Укажите корни этого уравнения, принадлежащие промежутку [3π/2 ; 3π].

а) Решите уравнение [m]\frac{1}{tg x} + \frac{1}{ctg x} - 2 ctg 2x = 2[/m].

б) Найдите корни этого уравнения, принадлежащие промежутку
[m] [ -\frac{3 \pi}{2}; \frac{\pi}{2} ] [/m]

а) Решите уравнение (sin^2 x + cos^2 2x) - (sin x + cos 2x) + 1/2 = 0.

б) Найдите все корни этого уравнения, принадлежащие промежутку [7π/2 ; 7π].

a) Решите уравнение log²₂(5 - cos x) - 5 log₂(10 - 2 cos x) = -11.

б) Укажите корни этого уравнения, принадлежащие отрезку [5π/2 ; 4π].

а) Решите уравнение 2 cos^3 x = sin (π/2 - x) + 0,5 sin 2x.

б) Найдите корни уравнения, принадлежащие промежутку (-π/2; 5π/2).

а) Решите уравнение [m] \frac{1}{\sin^2 x} + \frac{1}{\cos ( \frac{7 \pi}{2} + x) } = 2 [/m]

б) Укажите корни этого уравнения, принадлежащие отрезку [m] [-\frac{5 \pi}{2} ; - \pi ] [/m].

Решите неравенство
[block](2^(2x+1)-3*2^x)/(2^x-2) + (4^x-2^x-21)/(2^x-5) <= 3*2^x+5[/block]

а) Решить уравнение 2cos(2x+Pi/3) + sqrt(3)sin2x = 2sin^2x - 1

б) Отбор корней [2Pi; 7Pi/2]

Найдите все решения уравнения 2sin 2x = -2 cos x, принадлежащие отрезку [-3π; -2π]

а) Решите уравнение 2^(2x^2) - (2³ + 2⁸) · 2^(x² + 2x) + 2^(11+4x) = 0.

б) Укажите корни этого уравнения, принадлежащие промежутку (1 + log₂ 0,25; log₂ 16,1].

a) Решите уравнение [m]3\sqrt{3}cos\left(\frac{3\pi}{2} + x\right) - 3 = 2sin^{2}x[/m].

б) Укажите корни этого уравнения, принадлежащие отрезку [m][2\pi; 3\pi][/m].

a) Решите уравнение [m]\cos x = \sqrt{\frac{1+\sin x}{2}}[/m].

б) Найдите его корни, принадлежащие отрезку [m]\left[3π; \frac{9π}{2}\right][/m].

а) Решите уравнение cos2x + sqrt(2)cos(2x-Pi/4) = sin2x - 1.

б) Найдите его решения, принадлежащие промежутку [-2π; π/2].

а) Решите уравнение (2 cos x - sqrt(3)) * log6(-tgx) = 0.

б) Найдите все корни этого уравнения, принадлежащие промежутку (π/2 ; 2π).

Решить уравнение sin^4x = 1 - cos2x

и указать его корни, принадлежащие отрезку [ -3π/6 ; 9π/4 ]

a) Решите уравнение
[m] \frac{2 \cos x - \sqrt{3}}{\sqrt{7 \sin x}} = 0 [/m]

б) Найдите все корни этого уравнения, принадлежащие отрезку
[m] [π; \frac{5π}{2}] [/m]

а) Решите уравнение sin^4 (x/4) - cos^4 (x/4) = sin (π/2 + x)

б) Найдите корни этого уравнения, принадлежащие [4π; 7π].

a) Решите уравнение 15^(cos x) = 3^(cos x) ⋅ 5^(sin x);

б) Найдите все корни этого уравнения, принадлежащие отрезку [5π; 13π/2].

a) Решите уравнение 2sin^3x = cos(x - π/2);

б) Найдите все корни этого уравнения, принадлежащие отрезку [-3π/2; -π/2].

а) Решите уравнение 4cos^2x + 4sinx - 1 = 0;

б) Найдите все корни этого уравнения, принадлежащие отрезку [m][π; \frac{5π}{2}][/m].

а) Решите уравнение 4^(x-(1/2)) - 5 * 2^(x-1) + 3 = 0;

б) Найдите все корни этого уравнения, принадлежащие промежутку (1;5/3).

a) Решите уравнение log2(4x^4 + 28) - 2 + log2sqrt(5x^2+1);

б) Найдите все корни этого yравнения, принадлежащие отрезку [-9/5 ; 7/5].

а) Решить уравнение sin x / (cos x + 1) = 1 - cos x.

б) Укажите корни этого уравнения, принадлежащие промежутку [ -5Pi/2 , -Pi ].

а) Решить уравнение sqrt(3x^3 - 5x^2 - 9x + 22) = 4 - x.

б) Укажите корни этого уравнения, принадлежащие промежутку [−(√2) / 2 ; 2√(10)]

а) Решите уравнение (3x^2 - 19x + 20)(2cosx + √3) = 0.

б) Найдите все корни этого уравнения, принадлежащие промежутку [3π/2 ; 3π].

a) Решите уравнение

[m]cos x + \sqrt{\frac{2 - \sqrt{2}}{2} (sin x + 1)} = 0[/m]

б) Найдите его корни, принадлежащие отрезку

[m]\left[\frac{-11р}{2}; -4π \right][/m]

а) Решите уравнение [m] (\sin^2 x - \sqrt{2} \sin x) \sqrt{\cos x} = 0. [/m]

б) Укажите корни, лежащие на промежутке [m] \left[\frac{7\pi}{2}; 5\pi \right] .[/m]

а) Решите уравнение cos^2( 5π/6 - x ) = cos^2( 5π/6 + x ).

б) Найдите все корни этого уравнения, принадлежащие промежутку [3π/2 ; 3π].

a) Решите уравнение cos2x + √2cos(π/2 - x) - 1 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [5π/2 ; 4π].

а) Решите уравнение 27^x - 6·9^x - 3^(x+2) + 54 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [log3 5; log3 8] .

Решить уравнение:
[block](4sin^4x+3cos2x-1)/(sqrt(tgx)) = 0[/block]

Найти все корни уравнения на отрезке [3π/2; 3π].

a) Решите уравнение:
[m]\frac{1}{\sin^2(x-\pi)} + \frac{31}{15 \sin(x)} + \frac{2}{15} = 0[/m]

b) Укажите корни этого уравнения, принадлежащие интервалу:
[m][2\pi; 4\pi][/m]

Решить cos^2x + 3sin^2x + 2sqrt(3)sinxcosx = 1
Найдите корни уравнения на промежутке [0°;180°]

a) Решите уравнение: 2sin^2x + sqrt(2)sin(x + π/4) = cos x

b) Укажите корни этого уравнения, принадлежащие отрезку [-2π; -π/2]

а) Решите уравнение 2 sin^2 (3π/2 + x) - 3√2 sin(-x) + 2 = 0
б) Найдите корни этого уравнения, принадлежащие [5π/2; 4π].

а) Решите уравнение: 16sin^4 x + 8cos2x - 7 = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0.5π; 2π].

a) Решите уравнение 2*cos(2Pi - x) - sin(x) = cos(x).

б) Найдите все корни этого уравнения, принадлежащие отрезку [Pi ; 2Pi ].

а) Решите уравнение sin^2x+0,5sin2x+x^(ln1)=1

б) Укажите корни этого уравнения, принадлежащие отрезку [-3Pi/2; 0] .

а) Решите уравнение tgx-sinx+cosx=1

б) Найдите все корни этого уравнения, принадлежащие отрезку [-4Pi; -5Pi/2] .

а) Решите уравнение: cos(x-2Pi) = sin(3Pi-x)

б) Укажите все корни этого уравнения, принадлежащие промежутку [—Pi; Pi/2]

а) Решите уравнение: 4cos^2x+10cos(x+3Pi)+4 = 0

б) Укажите все корни этого уравнения, принадлежащие промежутку [—3Pi/2; 0]

а) Решите уравнение sinx + (cos(x/2) - sin(x/2))(cos(x/2) + sin(x/2) = 0

б) Найдите корни уравнения, принадлежащие отрезку [Pi; 5Pi/2].

а) Решите уравнение sqrt(x^3+4x^2+9)-3 = x

б) Найдите все корни этого уравнения, принадлежащие отрезку [-9/2; 7/5]

а) Решите уравнение 4sinx = sqrt(3sinx + 5cos2x)

6) Найдите все корни этого уравнения, принадлежащие отрезку [-Pi/2; Pi]

а) Реши уравнение 19^(1+x) + 19^(1-x) = 362

б) Найди его корни, принадлежащие отрезку [0; 3].

а) Решите уравнение 8sin^2x+2sqrt(3)cos(3Pi/2 - x) = 9

б) Отбор корней на отрезке [-5Pi/2; -Pi]

а) Решите уравнение cos3x - cos4x = 0

б) Отбор корней на отрезке [-Pi/2; 0]

а) Решите уравнение 4cos^2x+4sinx-1 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [Pi; 5Pi/2]

а) cos2x+2=sqrt(3)cos(3Pi/2-x)

б) [-3Pi; -3Pi/2]

a) tg(Pi+x)cos(2x-Pi/2) = cos(-Pi/3)

б) [7Pi; 17Pi/2]

а) tg(2Pi+x)cos(Pi/2+2x) = cosPi

б) [3Pi; 9Pi/2]

а) Решите уравнение tg(Pi-x)cos(3Pi/2 - 2x) = sin 5Pi/6

б) Укажите корни этого уравнения, принадлежащие отрезку [-2Pi; -Pi/2]

а) Решить уравнения сos^2x-cos2x=0,75.
б) Отбор корней на отрезке [2Pi;-Pi/2]

cos2x+sin^2x = 3/4, [Pi; 2,5Pi]

sin(Pi/2+x) = sin2x, [-Pi; Pi/2]

cos2x-5sqrt(2)cosx-5 = 0, [-3Pi; -3Pi/2]

2sin(x+Pi/3)+cos2x = sqrt(3)cosx+1, [-3Pi, -3Pi/2]

а) Найдите корень уравнения sqrt(2)sin^2x = sinx

б) Найдите все корни этого уравнения, удовлетворяющие неравенству cosx < 0. (13)

a) Найдите корень уравнения 2cos2x-12cosx+7 = 0

б) Отбор корней на промежутку [-Pi; 5Pi/2] (15)

а) 8*16^(sin^2x) - 2*4^(cos2x) = 63

б) [7Pi/2; 5Pi]

a) (2cosx+1)(sqrt(-sinx)-1) = 0

б) [0; 3Pi/2]

а) Ре­ши­те урав­не­ние cos2x+0,5=cos^2x.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi/-Pi/2]

а) Ре­ши­те урав­не­ние sin2x=sin(Pi/2+x)
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-7Pi/2; -5Pi/2]

а) Ре­ши­те урав­не­ние 4cos^3x+3sin(x-Pi/2)=0.
б) Най­ди­те все корни этого урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi].

а) Ре­ши­те урав­не­ние sin2x=2sinx-cosx+1
б) Ука­жи­те корни урав­не­ния, при­над­ле­жа­щие от­рез­ку [-2Pi;-Pi/2]

а) Ре­ши­те дан­ное урав­не­ние 2cos^2x+2sin2x=3.
б) Ука­жи­те корни дан­но­го урав­не­ния, при­над­ле­жа­щие про­ме­жут­ку [-3Pi/2; -Pi/2]

а) Решите уравнение cos2x=1-cos(Pi/2-x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-5Pi/2;-Pi)

а) Решите уравнение
(4sin^2x-1)sqrt(64Pi^2-x^2) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [-30; -20]

а) Решить уравнение [m]\frac{sinx-sin2x}{\sqrt{2cosx-1}} = 0[/m]

б) Отобрать корни из отрезка [-3Pi; 7Pi]

а)cos2 x +3cos(3π/2+x)-2=0
б)[-5π;-3π]

а) Решите уравнение (9^(sin2x)-3^(2sqrt(2)sinx)) / (sqrt(11sinx)) = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку [7Pi/2; 5Pi]

a) Решите уравнение -cos2x+sqrt(2)cos(Pi/2+x)+1 = 0

б) Отберите корни из данного отрезка [2Pi; 3,5Pi]

а) Решить уравнение [m](\frac{1}{10})^{\sqrt{3}sin(\frac{\pi}{2}-x)} = 10^{sin(2\pi-x)}[/m]

б) Укажите корни этого уравнения, принадлежащие отрезку [m][-\frac{9\pi}{2}; -3\pi][/m]

a) Решить уравнение 4sin^2x-3sinx*cosx-cos^2x = 0

б) Найти все корни этого уравнения, принадлежащие промежутку [0; Pi/4]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корни на промежутке [Pi/2; 2Pi]

а) Решить уравнение log(-cosx)(1-0,5sinx) = 2

б) Отобрать корни на отрезке [14Pi; 16Pi]

а) Решите уравнение [m]\frac{\sqrt{3}tgx+1}{2sinx-1}=0[/m]

б) Найдите корни, принадлежащие отрезку [m][\frac{9\pi}{2}; 6\pi][/m]

а) [m]\frac{sinx-sin^2x}{4cos^2\frac{x}{2}} = 0[/m]

б) [-6Pi; -9Pi/2]

9^(cosx) + 9^(-cosx) = 10/3

[2Pi; 7Pi/2]

а) Решить уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1,

б) Отобрать корни на отрезке [-7Pi/2; -2Pi]

а) Решите уравнение tg^2x+5tgx+6=0
б) Найдите корни этого уравнения, принадлежащие промежутку [–2π;–π/2]

решите уравнение 4cos^2 x + 8sin (3П/2 - x) - 5 = 0
и укажите корни этого уравнения принадлежащие отрезку [-7П/2; -2П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin^3 (x + 3П/2) + cosx = 0
[5П/2; 4П]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
2√2sin (x + П/3) + 2cos^2 x = √6cosx + 2
[-3П; -3П/2]

решите уравнение и укажите корни этого уравнения принадлежащие отрезку
√2sin (x + П/4) + cos(2x) = sinx - 1
[7П/2; 5П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2sin (2x + П/6) + cosx = √3 sin(2x) - 1
[4П; 11П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
2cos^3 x = sin (П/2 - x)
[-4П; -5П/2]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
8sin^2 x - 2√3cos (П/2 - x) - 9 = 0
[-5П/2; -П]

решить уравнение и указать корни этого уравнения принадлежащие отрезку
cos2x + √2sin (П/2 + x) + 1 = 0
[2П; 7П/2]

а) Решите уравнение (6/5)^(cos3x)+(5/6)^(cos3x) = 2,

б) Укажите корни этого уравнения, принадлежащие промежутку [4Pi; 9Pi/2)

(sinx+cosx)sqrt(2) = tgx+ctgx, [-Pi; Pi/2]

а) Решите уравнение log(1,75)(2-sin^2x-sinx-cos2x) = 1

б) Отобрать корни на отрезке [-7Pi/2; - 2Pi]

а) Решите уравнение tg(2Pi-x)cos(3Pi/2 + 2x) = sin(-Pi/2)

б) Укажите корни этого уравнения, принадлежащие [2Pi; 7Pi/2]

а) Решите [m]log^2_{2x} (4x^3) -2 = log_{2x} (4x)[/m]

б) Отбор корней на промежутке [m] [\frac{1}{2}; \frac{1}{\sqrt[10]{2}}] [/m]

а) Решите уравнение 8sinx+4cos^2x = 7;

б) Найдите корни на отрезке [-3Pi/2; -Pi/2]

a) Решите уравнения cos^2(x/2)-sin^2(x/2) = sin((Pi/2)-2x)

б) Укажите корни уравнения, принадлежащие отрезку [Pi; 5Pi/2]

[block]а) Решить уравнение (cos^2x+sqrt(3))/(sqrt(3)cos^2x) = (sqrt(3)+4)/(2sqrt(3)cosx)[/block]

б) Найдите корни на промежутке [-1;3]

Решите уравнение sin2x=cos(pi/2-x)
Найти все корни на промежутка [-Pi;0]

2cos^2x+2sqrt(2)cos(п/2-x)+1=0;
Корни на промежутке [3п/2;3п]

1) Решите уравнение 2sin^2x - 3sqrt(2)sin (3Pi/2) - 4 = 0

2) Найдите корни, принадлежащие отрезку [Pi; 5Pi/6]

Решите неравенство 2sin^2x-2√2cos+1=0
корни на промежутке [5п/4 4п]

2sin²x+3√2cos(3π/2+x) +2 =0

a) Решите уравнение sqrt(x^(2)-2x+1) + sqrt(x^(2)+2x+1) = 2

б) Отбор корней на промежутке [1;2]

Найти корень уравнения 3+2sin2x=tgx+ctgx, принадлежащий интервалу (50°;90°)

а) Решить уравнение [m]3cos\frac{x}{4}cos\frac{x}{2}sin\frac{x}{4} = \frac{1-ctgx}{1-ctg^2x}[/m]

б) Укажите корни, принадлежащие интервалу (-2Pi; -3Pi/2)

3log^2(8)(sinx) - 5log(8)(sinx) - 2
[-7π/2; 2π]

Решить уравнение
(tg ^2 x -2 tgx-3)*log5(-2sinx)
Отберите корни на отрезке [П/2;3П]

а) Решите уравнение (3ctg^2x+4ctgx)/(5cos^2x–4cosx)=0
б) отберите корни на промежутке [5п/2;5п]
Пожалуйста с отбором корней подробнее

а) Решите уравнение (log^2_(2)(sinx)+log2(sinx)) / (2cosx+sqrt(3))=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [0;  3π/2]

ctgx - 2cos(П/2 - 2x) = 0
Условие [ - П; П/2 ]

а) Решите уравнение 2/(tg^2x+1) = 3sin(3Pi+2x)

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2; Pi]

а) Решите уравнение (sin2x-2cosx)*log2(log(1/3)(x+5)) = 0 [Л13]

б) Укажите корни этого уравнения, принадлежащие промежутку (-3Pi/2; 0)

а) Решите уравнение 20^(cosx)=4^(cosx)⋅5^(−sinx).

б) Найдите все корни этого уравнения, принадлежащие отрезку [−9π/2;−3π].

а) Решите уравнение sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отбор корней на отрезке [-7Pi/2; -2Pi]

а) Решить 2*9^x-11*6^x+3*4^(x+1) = 0,

б) Отбор корней: [0, 3]

а) Решить уравнение 8^(2sqrt(3)cosx) = 64^(sin2x),

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решить уравнение sqrt(x^3-4x^2-10x+29) = 3-x,

б) Отбор корней [-sqrt(3); sqrt(30)]

(1+tg^2x)cos(Pi/2+2x) = 2/sqrt(3), [-3Pi/2; Pi]

tg(Pi+x)cos(2x-Pi/2)=cos(-Pi/3), [7Pi; 17Pi/2]

tg(Pi-x)cos((3Pi/2) - 2x) = sin(5Pi/6), [-2Pi; -Pi/2]

sinx=sqrt((1-cosx)/2), [2Pi; 7Pi/2] [v8-13]

Решите уравнение 2sinx*sin3x=cos2x, и найдите корни из промежутка (0;П)

а) log(sinx) (1+cos2x+cos4x) = 0

б) Укажите решение уравнения принадлежащее отрезку [0; Pi]

а) Решите уравнение 2ctg^(2)x = 3/sinx

б) Отобрать корни [0, 2π)

а) Решить уравнение tg^2x+1 = 1/cos((3Pi/2)+2x)

б) Отобрать корни на отрезке [-Pi/2; 5Pi/2]

а) Решить уравнение 2sin(x+Pi/6)-2sqrt(3)cos^2x = cosx-2sqrt(3)

б) Отобрать корни на отрезке [-5Pi/2; -Pi]

а) Решить уравнение (1+2sinx)sinx = sin2x+sin(Pi/2-x)

б) Отбор корней на отрезке [-3Pi/2; 0]

sqrt(2cos^2x-sqrt(2))+sqrt(2)sinx = 0, [-7Pi; -11Pi/2] (л13)

а) Решить уравнение 2cos^2x = sin(Pi/2-x)

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решить уравнение cos4x-cos2x = 0

б) Отобрать корней на отрезке [Pi/2; 2Pi]

а) Решить уравнение sqrt(3)sinx+2sin(2x+Pi/6) = sqrt(3)sin2x+1

б) Отобрать корни на отрезке [-3Pi; -3Pi/2]

a) Решите уравнение sqrt(4cos2x-2sin2x)=2cosx
б) Укажите корни этого уравнения, принадлежащие отрезку [-13Pi/6; -Pi/2]

а) Решить уравнение: (sin(Pi-x))/(2sin^2(x/2)) = 2cos^2(x/2)

б) Сделать отбор корней на отрезке [7Pi/2;5Pi]

а) Решите уравнение 2/(tg^2x+1)=3sin(3Pi+2x).

б) Найдите все корни уравнения, принадлежащие отрезку [-3Pi/2 ; Pi].

а) Решить уравнение 9*81^(cosx)-28*9^(cosx)+3 = 0,

б) Отбор корней на отрезке [5Pi/2; 4Pi]

а) Решите уравнение: 4cos2x=2cos(Pi/2-x)+1

б) Выполните отбор корней: [-3Pi/2; Pi/2]

а) Решить уравнение sin2x / sin(3Pi/2-x) = sqrt(2)

б) Отбор корней на отрезке [2Pi; 7Pi/2]

а) Решите уравнение (25^(sin2x)-5^(2sqrt(2)sinx))/sqrt(17sinx) = 0.

б) Найдите все корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решить уравнение 16^(sin(2x+Pi/4)) =4^(sqrt(2)(sin2x+tgx*ctgx))*16^(sinx)

б) Отобрать корни на отрезке [3Pi/2; 3Pi]

а) Решите уравнение: sqrt(2)sin(2x-Pi/4)-sqrt(3)sinx = sin2x+1

б) Выполнить отбор корней: [-3Pi/2; 0]

а) Решить уравнение cos4x+sin2x = 0,

б) Выполнить отбор корней на промежутке 90°< x< 180°

а) Решить уравнение sin2x=2sinx-cosx+1

б) Выполнить отбор корней на отрезке [-2Pi;-Pi/2]

а) Решить уравнение:36^(2cosx+1)+16*4^(2cosx-1)=24*12^(2cosx)

б) Выполнить отбор корней: [-Pi/2;0]

a) Решите уравнение sin(2x+Pi/6) = cosx+cos(x+Pi/6)sinx

б) Определите, какие из его корней принадлежать отрезку [-5Pi; -7Pi/2]

а) Решить уравнение: 2cos(x-3Pi/2)+sqrt(2)cosx = sin2x-sqrt(2)

б) Укажите корни этого уравнения, принадлежащие отрезку [-5Pi;-7Pi/2]

а) Решите уравнение 3-2cos^2x+3sin(x-Pi) = 0

б) Найдите корни этого уравнения, принадлежащие промежутку [7Pi/2; 11Pi/2)

а) Решите уравнение 9*3^(2cosx)-10sqrt(3)*3^(cosx)+3 = 0

б) Укажите корни этого уравнения, принадлежащие отрезку [3Pi/2; 4Pi]

а) Решите уравнение cos^2x+4cos^23x+4cos3xcosx-6cosx-12cos3x=-9

б) Найдите решения уравнения, принадлежащие промежутку [2015Pi; 2017Pi]

а) Решите уравнение cos^25x+2cos5xsin(x-Pi/10)+1=0

б) Найдите решения уравнения, принадлежащие промежутку [2016Pi; 2017Pi].