Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 57646 ...

Условие

а) Решите уравнение 2cos^2(5Pi/2 + x) + sqrt(2)sinx = 0

б) Укажите его корни, принадлежащие отрезку [9Pi/2; 6π].

математика 10-11 класс 258

Решение

По формулам приведения:

[m]cos(\frac{5π}{2}+x)=-sinx[/m]

Уравнение:

[m]2(-sinx)^2+\sqrt{2}\cdot sinx=0[/m]

[m]2sin^2x+\sqrt{2}\cdot sinx=0[/m]

[m]sinx\cdot (2sinx+\sqrt{2})=0[/m]

[m]sinx=0[/m] или [m]2sinx+\sqrt{2}=0[/m]


[m]sinx=0[/m] ⇒[m] x=πk, k ∈ [/m][b]Z[/b]

ИЛИ

[m]2sinx+\sqrt{2}=0[/m] ⇒ [m]sinx=-\frac{\sqrt{2}}{2}[/m] ⇒[m]x=(-1)^{k}(-\frac{π}{4})+πk, k ∈ [/m][b]Z[/b]

Запишем как две серии:

[m]x=-\frac{π}{4}+2πn, n ∈ [/m][b]Z[/b] или [m]x=-\frac{3π}{4}+2πm, m ∈ [/m][b]Z[/b]

(Очень полезно, [b]особенно при отборе корней[/b], записывать решение уравнения sinx=a в виде двух серий с периодом 2π)

Итак, получили три серии корней. Это и есть О Т В Е Т

[m] x=πk, k ∈ [/m][b]Z[/b]

ИЛИ

[m]x=-\frac{π}{4}+2πn, n ∈ [/m][b]Z[/b] или [m]x=-\frac{3π}{4}+2πm, m ∈ [/m][b]Z[/b]

2)
Отбор корней проведем на единичной окружности.

См. рис. 2


Из серии [m] x=πk, k ∈ [/m][b]Z[/b]

[m]x=5π ∈ [\frac{9π}{2};6π][/m]

Из серии [m]x=-\frac{3π}{4}+2πm, m ∈ [/m][b]Z[/b]

[m]x=-\frac{3π}{4}+6π =\frac{21π}{4} ∈ [\frac{9π}{2};6π][/m]

Из серии [m]x=-\frac{π}{4}+2πn, n ∈ [/m][b]Z[/b]

[m]x=-\frac{π}{4}+6π =\frac{23π}{4} ∈ [\frac{9π}{2};6π][/m]



Написать комментарий

Категория

Меню

Присоединяйся в ВК