Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 63712 ...

Условие

Решить неравенство:

3log4(x2+5x+6) ≤ 5 + log4((x+2)3/(x+3))

математика 10-11 класс 1249

Решение

ОДЗ:

[m]\left\{\begin {matrix}x^2+5x+6>0\\\frac{(x+2)^3}{x+3}>0\end {matrix}\right.[/m] ⇒ [m]\left\{\begin {matrix}(x+2)(x+3)>0\\\frac{(x+2)^3}{x+3}>0\end {matrix}\right.[/m] ⇒x ∈ (– ∞;–3) U(–2;+ ∞)



[m]3log_{4}(x+2)(x+3) ≤5 log_{4}4+log_{4}\frac{(x+2)^3}{x+3}[/m]

[m]log_{4}((x+2)(x+3))^3 ≤ log_{4}4^5+log_{4}\frac{(x+2)^3}{x+3}[/m]

[m]log_{4}((x+2)(x+3))^3 ≤ log_{4}4^5\cdot \frac{(x+2)^3}{x+3}[/m]

Основание логарифмической функции 4 > 1.

Функция возрастает.

[m]((x+2)(x+3))^3 ≤4^5\cdot \frac{(x+2)^3}{x+3}[/m]

[m]((x+2)(x+3))^3 -4^5\cdot \frac{(x+2)^3}{x+3} ≤0 [/m]

[m](x+2)^3\cdot ((x+3))^3-\frac{1024}{x+3} )≤0[/m]

[m](x+2)^3\cdot (\frac{(x+3)^4-32^2}{x+3} )≤0[/m]

[m](x+2)^3\cdot (\frac{((x+3)^2-32)((x+3)^2+32)}{x+3} )≤0[/m]

[m](x+2)^3\cdot (\frac{((x+3)-\sqrt{32})((x+3)+\sqrt{32})}{x+3} )≤0[/m]

Решаем методом интервалов:

____+__ [–4√2–3] ____–___ (–3) __+__ [–2]______–____ [4√2–3] ____+___

C учетом ОДЗ: x ∈ (– ∞;–3) U(–2;+ ∞)

о т в е т. [–4√2–3;–3) U [–2;4√2–3]

Обсуждения

Написать комментарий