Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 42928 ...

Условие

Решите неравенство

4x–2x+3+74x–5·2x+4
2x–92x–4
+
12x–6

математика 10-11 класс 1709

Решение

Замена переменной:

2x=t, t > 0

2x+3=2x·23=8t

4x=(2^2)x=(2x)^2=t2


[m]\frac{t^2-8t+7}{t^2-5t+4}\leq \frac{t-9}{t-4}+\frac{1}{t-6}[/m]

t ≠ 4; t ≠ 6;

t2–5t+4 ≠ 0 ⇒ t ≠ 1 и t ≠ 4

[m]\frac{t^2-8t+7}{t^2-5t+4}- \frac{t-9}{t-4}-\frac{1}{t-6}\leq 0[/m]

[m]\frac{t^2-8t+7}{(t-4)(t-1)}- \frac{t-9}{t-4}-\frac{1}{t-6}\leq 0[/m]

Приводим к общему знаменателю

Иногда бывает полезно приводить к общему знаменателю поэтапно:

[m]\frac{t^2-8t+7-(t-9)(t-1)}{(t-4)(t-1)}-\frac{1}{t-6} \leq 0[/m]

[m]\frac{t^2-8t+7-t^2+9t+t-9}{(t-4)(t-1)}-\frac{1}{t-6} \leq 0[/m]

[m]\frac{t^2-8t+7-t^2+9t+t-9}{(t-4)(t-1)}-\frac{1}{t-6} \leq 0[/m]

[m]\frac{2(t-1)}{(t-4)(t-1)}-\frac{1}{t-6} \leq 0[/m]

t ≠ 1

[m]\frac{2}{t-4}-\frac{1}{t-6} \leq 0[/m]

[m]\frac{2(t-6)-(t-4)}{(t-4)(t-6)} \leq 0[/m]

[m]\frac{2t-12-t+4}{(t-4)(t-6)} \leq 0[/m]

[m]\frac{t-8}{(t-4)(t-6)} \leq 0[/m]

(0) _–_ (1) _–__ (4) __+___ (6) __–___ [8] __+___


0 < t < 1; 1< t < 4 ; 6 < t ≤ 8


2x < 1; 1 < 2x < 4; 6 < 2x ≤ 8


x < 0; 0 < x < 2; log26 < x ≤ 3


О т в е т. (– ∞ ;0) U (0;2) U (log26; 3]

Обсуждения

Написать комментарий