✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37758

УСЛОВИЕ:

Решите неравенство

log(1/10)(6-6x) ≥ log(1/10)(x^2-4x+3) + log(1/10)(x+4)

Добавил 89507435651, просмотры: ☺ 172 ⌚ 2019-05-29 15:52:02. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

{6-6x>0 ⇒ x < 1
{x^2-4x+3 >0 ⇒ D=16-12=4; корни 1 и 3; ⇒ x < 1 или x >3
{x+4>0 ⇒ x > -4
ОДЗ: х ∈ (-4;1)

Cумму логарифмов заменим логарифмом произведения

log_(0,1) (6-6x)≥ log_(0,1) (x^2-4x+3)*(x+4)

Логарифмическая функция с снованием (0 < 0,1 < 0) убывающая. Большему значению функции соответствует меньшее значение аргумента.

6-6x ≤ (x^2-4x+3)*(x+4)

(x^2-4x+3)*(x+4)+ 6(х-1) ≥ 0

(x-1)(x-3)*(x+4) + 6(х-1) ≥ 0

(x-1)*(x^2+x-12+6)≥ 0

(х-1)*(х^2+x-6)≥ 0

D=1-4*(-6)=25
корни
-3 и 2

(x-1)*(x+3)*(x-2)≥ 0

Решаем неравенство методом интервалов

_-__ [-3] __+__ [1] _-__ [2] _+__
на ОДЗ

х ∈ [-3;1] U [2;+∞)
С учетом ОДЗ

(-4) __-__[-3] _+_ (1)

О т в е т. [b] (-3;1)[/b]

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ u821511235

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 38639
(прикреплено изображение) [удалить]
✎ к задаче 38644
https://youtu.be/TCYxxYO_5ag
поставьте лайк)
[удалить]
✎ к задаче 38497
(прикреплено изображение) [удалить]
✎ к задаче 38641
(прикреплено изображение) [удалить]
✎ к задаче 38638