{0,25x^2>0 ⇒ x ≠ 0
{0,25x^2 ≠ 1 ⇒ x ≠ ± 2
{(x+6)/4>0 ⇒ x>-6
[b]x ∈(-6;-2)U(-2;0)U(0;2)U(2;+ ∞ ) [/b]
Так как
1=log_(0,25x^2)0,25x^2
Неравенство принимает вид:
log_(0,25x^2)(x+6)/4 ≤ log_(0,25x^2)0,25x^2
[b]Если[/b]
0,25x^2>1, логарифмическая функция возрастает, тогда
(х+6)/4 ≤ 0,25x^2
[b]Если[/b]
0<0,25x^2<1, логарифмическая функция убывает, тогда
(х+6)/4 ≥ 0,25x^2
Решаем первую систему:
{0,25x^2>1 ⇒ x^2>4 ⇒ (- ∞ ;-2)U(2;+ ∞ )
{x+6-x^2 ≤ 0 ⇒ x^2-x-6 ≥ 0 D=25; корни -2 и 3 ⇒ (- ∞ ;-2]U[3;+ ∞ )
[b]x ∈ (- ∞ ;-2)U[3;+ ∞ )[/b]
Решаем вторую систему:
{0< 0,25x^2<1 ⇒ 0<x^2<4 ⇒ (-2;0)U(0;2)
{x+6-x^2 ≥ 0 ⇒ x^2-x-6 ≤ 0 D=25; корни -2 и 3 ⇒ [-2;3]
[b]x ∈ (-2;0)U(0;2)[/b]
C учетом ОДЗ получаем ответ:
[b](-6;-2)U(-2;0)U(0;2)U[3;+ ∞ )[/b]