[m](x-4)(\log_{5}{(125-25x)}-\log_{6}{(x^2+x-6)}+\frac{1}{\log_{(5-x)}{0,2}}+x+6) ≤ x^2+2x-24[/m]
[m]\left\{\begin {matrix}125-5x>0\\x^2+x-6>0\\5-x>0\\5-x ≠1 \end {matrix}\right.[/m] ⇒ [m]\left\{\begin {matrix}x<5\\(x+3)(x-2)>0\\\\x ≠4 \end {matrix}\right.[/m]
[m]x ∈ (- ∞ ;-3)\cup(2;4)\cup(4;5)[/m]
В условиях ОДЗ:
[m]log_{5}(125-5x)=log_{5}25\cdot(5-x)=log_{5}25+log_{5}(5-x)=2+log_{5}(5-x)[/m]
[m]log_{5-x}(0,2)=\frac{1}{log_{0,2}(5-x)}=log_{5^{-1}}(5-x)=-log_{5}(5-x)[/m]
Неравенство принимает вид:
[m](x-4)\cdot (2+log_{5}(5-x)-log_{6}(x^2+x-6)-log_{5}(5-x)+x+6) ≤ x^2+2x-24[/m]
[m](x-4)\cdot (2-log_{6}(x^2+x-6)+x+6) ≤ (x-4)(x+6)[/m]
[m](x-4)\cdot (2-log_{6}(x^2+x-6)+x+6) - (x-4)(x+6) ≤0 [/m]
[m](x-4)\cdot (2-log_{6}(x^2+x-6)+x+6-(x+6)) ≤0 [/m]
[m](x-4)\cdot (2-log_{6}(x^2+x-6)+x+6-x-6) ≤0 [/m]
[m](x-4)\cdot (2-log_{6}(x^2+x-6)) ≤0 [/m]
[m]\left\{\begin {matrix}x-4 ≤ 0\\2-log_{6}(x^2+x-6) ≥ 0 \end {matrix}\right.[/m] или [m]\left\{\begin {matrix}x-4 ≥ 0\\2-log_{6}(x^2+x-6) ≤ 0 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix}x-4 ≤ 0\\log_{6}(x^2+x-6) ≤ 2\end {matrix}\right.[/m] или [m]\left\{\begin {matrix}x-4 ≥ 0\\log_{6}(x^2+x-6) ≥2 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix}x-4 ≤ 0\\x^2+x-6 ≤ 36\end {matrix}\right.[/m] или [m]\left\{\begin {matrix}x-4 ≥ 0\\x^2+x-6 ≥36 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix}x-4 ≤ 0\\(x+7)(x-6) ≤ 0\end {matrix}\right.[/m] или [m]\left\{\begin {matrix}x-4 ≥ 0\\(x+7)(x-6) ≥0
\end {matrix}\right.[/m]
[m]x ∈ [-7;4] [/m] или [m]x ∈ [6;+ ∞ )[/m]
С учетом ОДЗ [m]x ∈ (- ∞ ;-3)\cup(2;4)\cup(4;5)[/m]
получаем ответ:
[m][-7;-3)\cup(2;4)[/m]