✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 37767

УСЛОВИЕ:

Решите неравенство log 4 (24-12x)≥ log 4 (x^2-7x+10)+ log 4 (x+3)

Добавил marina_88, просмотры: ☺ 2313 ⌚ 2019-05-29 16:58:47. математика 10-11 класс

Решения пользователей

РЕШЕНИЕ ОТ sova

ОДЗ:
{24-12x>0 ⇒ x < 2
{x^2-7x+10 >0 ⇒ D=49-40=9; корни 2 и 5; ⇒ x < 2 или x > 5
{x+3>0 ⇒ x > -3
ОДЗ: х ∈ (-3;2)

Cумму логарифмов заменим логарифмом произведения

log_(4) (24-12x) ≥ log_(4) (x^2-7x+10)*(x+3)

Логарифмическая функция с снованием (4>1) возрастающая. Большему значению функции соответствует большее значение аргумента.

24-12x ≥ (x^2-7x+10)*(x+3)
(x^2-7x+10)*(x+3)+ 12(х-2) ≤ 0
(x-2)(x-5)*(x+3) + 12(х-2) ≤ 0

(x-2)*(x^2-2x-15+12)≤ 0

(х-2)*(х^2-2x-3)≤ 0

D=4-4*(-3)=16
корни
-1 и 3

(x-2)*(x+1)*(x-3) ≤ 0

Решаем неравенство методом интервалов
__-_ [-1] __+__ [2] __-__ [3] _+__

C учетом ОДЗ
х ∈ (-3;2)

(-3) __-__[-1] _+_ (2)

О т в е т. [b] (-3;-1][/b]

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

РЕШЕНИЕ ОТ u821511235

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 38639
(прикреплено изображение) [удалить]
✎ к задаче 38644
https://youtu.be/TCYxxYO_5ag
поставьте лайк)
[удалить]
✎ к задаче 38497
(прикреплено изображение) [удалить]
✎ к задаче 38641
(прикреплено изображение) [удалить]
✎ к задаче 38638