✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Эллипс, гипербола, парабола

Практика

Зарегистрируйтесь и система сможет запоминать Ваши ответы.
Записать уравнение окружности проходящей через фокусы эллипса 3x^2+4y^2=12 и имеющей центр в точке A-его верхней вершине
Определить тип линии и найти ее основные характеристики [b]4x^(2)+3y^(2)-8x+12y-32=0[/b]
Помогите решить пожалуйста
Здравствуйте нужна помощь;
№1 Cоставить каноническое уравнение гиперболы, если
а)2 с - 10, 2 а - 6;
b) c - 1,5, 2 c - 6;
№2 Даны гиперболы;
1) 16x^(2)-25y^(2)=400
№3 Определить координаты фокуса и составить уравнение директрисы каждой из парабол:
1) y^(2)=24x
2)y^(2)=-12x
3)x^(2)=4y
4)x^(2)=-32y
5
Быстрее
Составить Каноническое уравнение: а) эллипса; б) гиперболы; в)
параболы (A, B – точки, Которые лежат на кривой, F – фокус, a – большая
(Действительная) полуось,
b – малая (мнимая) полуось,
ε – эксцентриситет,
y = ± kx – уравнения асимптот гиперболы,
D – директриса кривой,
2C – фокусное
расстояние).
а)ε= √21/5 ; A(–5;0)
б)A (√80;3) ,B(4 √6 ;3 √2) ;
в)D: y=1
Составить каноническое уравнение: а) эллипса; б) гиперболы; в) параболы. На фотографии вариант 14.6
Составить уравнение эллипса, зная, что:
а) его большая полуось равна 10 и фокусы суть F1(-6;0), F2(10;0)
б) а=5, F1(-3;5), F2(3;5)
2.
Составить каноническое уравнение эллипса, фокусы которого расположены на оси Ох, симметрично относительно начала координат, если:
а)задана точка M1(2 корня из 3;1) эллипса и его малая полуось равна 2
б) заданы две точки эллипса M1(0;7) и M2(8;0)
в)расстояние между фокусами равно 24 и большая ось равна 26
г) экцентриситет равен 7/25 и заданы фокусы (+-7;0)
Записать уравнение окружности, проходящей через указанные точки и имеющей центр в точке А.
Левую вершину гиперболы 5x^2–9y^2=45, A(0, –6)
Кривая второго порядка задана общим уравнением относительно ПДСК.

1) Привести уравнение к каноническому виду и построить линию;
2) найти координаты фокусов (фокуса – в случае параболы).

5х² + 12ху – 22х – 12у – 12 = 0
Составить канонические уравнения: а) эллипса; б)гиперболы; в) параболы. Где А, В – точки, лежащие на кривой, F – фокус, a – большая (действительная) полуось, b – малая (мнимая) полуось, Е – эксцентриситет, у = + –kx – уравнения асимптот гиперболы, D – директриса кривой, 2с –фокусное расстояние.
а) а=9, F(-10;0); б)b=6, F(12;0); в)D: x=-1/4
Нужно решить с решением, дано и с графикоми. Взарание спасибо большое за помощь)))

Редакторы

sova
Создатель
Самые активные
Заданий в данной категории еще никто не выполнял. Хочешь начать?
*з.в. - заданий выполнено