✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

19 задача ЕГЭ

Практика

Зарегистрируйтесь и система сможет запоминать Ваши ответы.
По окружности в некотором порядке расставлены натуральные числа от 1 до 12. Между каждыми двумя соседними числами написали модуль их разности. Затем исходные числа стёрли.

а) Приведите пример расстановки, когда сумма полученных чисел равна 32.

б) Может ли сумма полученных чисел быть равна 29?

в) Какое наибольшее значение может принимать сумма полученных чисел?
Три различных натуральных числа являются длинами сторон некоторого тупоугольного треугольника.

а) Может ли отношение большего из этих чисел к меньшему из них быть равно 3/2?

б) Может ли отношение большего из этих чисел к меньшему из них быть равно 5/4?

в) Какое наименьшее значение может принимать отношение большего из этих чисел к меньшему из них, если известно, что среднее по величине число равно 18?
Имеется пять палочек с длинами 2, 3, 4, 5, 6.

а) Можно ли, используя все палочки, сложит равнобедренный треугольник?

б) Можно ли, используя все палочки, сложить прямоугольный треугольник?

в) Какой наименьшей площади можно сложить треугольник, используя все палочки? (Разламывать, палочки нельзя)
А) Каждая точка плоскости окрашена в один из двух цветов. Обязательно ли на плоскости найдутся две точки одного цвета, удаленные друг от друга ровно на 1 м?

Б) Каждая точка прямой окрашена в один из 10 цветов. Обязательно ли на прямой найдутся две точки одного цвета, удаленные друг от друга на целое число метров?

В) Какое наибольшее количество вершин куба можно покрасить в синий цвет так, чтобы среди синих вершин нельзя было выбрать три, образующие равносторонний треугольник?
В каждой клетке таблицы размером 3 x 3 записаны числа от 1 до 9 (рис.). За один ход разрешается к двум соседним числам (клетки
имеют общую сторону) прибавить одно и то же целое число.

А) Можно ли таким образом получить таблицу, во всех клетках которой будут одинаковые числа?

Б) Можно ли таким образом получить таблицу, составленную из одной единицы (в центре) и восьми нулей?

В) После нескольких ходов в таблице оказались восемь нулей и какое‐то число N, отличное от нуля. Найдите все возможные N.
В группе 32 студента. Каждый из них пишет или одну, или две контрольные работы, за каждую из которых можно получить от 0 до 20 баллов включительно. Причем каждая из двух контрольных работ по отдельности дает в среднем 14 баллов. Далее, каждый из студентов назвал свой наивысший балл (если писал одну работу, то называл за нее), из этих баллов находили среднее арифметическое и оно равно S.

а) Приведите пример, когда S < 14.
Б) Могло ли быть такое, что 28 человек пишет две контрольные и S=11?
В) Какое максимальное число студентов могло написать две контрольные работы, если S=11?
На доске были написаны несколько целых чисел. Несколько раз с доски стирали по два числа, разность которых делится на 5.
В)Пусть известно, что на доске осталось ровно два числа, а изначально по одному разу были написаны квадраты натуральных чисел от 59 до 92 включительно. Какое наибольшее значение может получиться, если поделить одно из оставшихся чисел на второе из них?

Редакторы

sova
Создатель
Самые активные
Заданий в данной категории еще никто не выполнял. Хочешь начать?
*з.в. - заданий выполнено