✎ Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Найдем любую задачу

Архив задач

№75257. Построить на плоскости геометрическое место точек определяемое неравенствами
просмотры: 293 | математика
№75256. // ,/‘2/&;…‚.„ ypalllc“:c ия‹'лт;лмшй к графику функиии. уд‚‚…с ',-sju)'“’““"“ сциссой х = @, et „/Г el m/uvsz‘*"”"”:“ i „,/…‹х‘.п;\ _7 ТОа „/…‚,е/зх-ъз„п—\ i Lt ""F;d;fi L{""- iatold Lok НН ‘уравнение касате ›ф,ы,ьд'м„( у= о) вточкее яе‚шсеойхе?г Ва „…ЁЭХ‚’Т 1 & e Л оЗ ЗОЫ, в›/‹.‹›=/‚а=4—\ 5= i - . и экстремумы
просмотры: 183 | математика 10-11
№75255. 6 B e e крафих = [о9м (e K \ Н-'\:“"'ЬШ‚…—…‚ s ‘цавлите значение Tpon зводной срункимЙ 10 ъ o @лТ 7\ Ц 1 ‚‚_‚___‚_‚_„„_„/…__//‚‚___/‚ g \ _‚_‚‚/_‚_‚_/_/__/// /; В. НЕВ / : E'—\?\ ; 2[R ' ВЕ дание? % \\.\\‹ису\ч‹снзобрх\жшг\›‘дфикшншии = | о 5) Найлите ‚ оличество точсук. \{ \:‹:‹:\:Ё:ЁЁ "‘:\m = „‚‚…‚„‚‚……„у Щ лл еа S e о .д\—щ\ / 2 ““; I \ !L\r, вна ЗОН ‚з!дд\\и:в л ! ца рисунк®. m&pmmwmyfimwywm)n асотельная © нему BTOUKE X £ """"" / А -’‚-Б' = Tl 'А'-' пп-и-;пв мш‹!шіи‚--- : “‘Cii?)"‘l-n‘-"--_ Й ;›ч*'\випивін-- Г _:‚ь:‘:т_.в:;р_'г lll! o™ -+ S
просмотры: 183 | математика 10-11
№75254. Заланне 0 ообраяен график функиии /00 и касательй Нарисунке изобрален pa i и g, в очке сабеиисой х Найдите значение произволной ‹ь›пки….,‚‘;’‚ вточке х й — — — ЕЕ i В В Il TFTolioysl T T e ] — — — — _ 0 — — — — <ва — — — — — оаиа У= /0 — — — _ Зн Залание 10 .На рисунке изображен график функции @ касательная к нему вточкс ‘еябециссой х Найдите значение производной. Чункиин/С) вточке д - с — — — сс ЕНО На Щ ›= /0 - TR [ ТЬ T Задание 11. Определите, какой ол образует касательная» с пооеденная к графику фуикиин у— /(%) в точке сябециссой х = , еслиг а) /0 =х, а= 0,5 6) /( = аВЕН /0 ==3d =3 B)/()=0,2¢a=—| 1) /) =~0,05, a=
просмотры: 184 | математика 10-11
№75253. у | [ 1— — — —Lufi—y‘ = — ) vy _ AL‘ i S ay: оан 5 y=SinX; Эв=/2.
просмотры: 199 | математика 8-9
№75252. В базисе (e1, e2, e3) даны векторы a1 = (-2; 1; 0), a2 = (1; 2; 1) и a3 = (-3; -1; 2). Найти координаты вектора d = e1 - 2e2 + 3e3 в базисе (a1, a2, a3).
просмотры: 279 | математика ВУЗ
№75251. y = arcsin √ 1 - 3x, y-?
просмотры: 157 | математика ВУЗ
№75250. Исследовать методами дифференциального исчисления функцию y=f(x) и, используя результаты исследования, построить её график
просмотры: 176 | математика ВУЗ
№75249. Написать уравнение прямой, проходящей через точку М_(0)(1;1;1) и перпендекулярной плоскости α: -x+2y+z=4
просмотры: 152 | математика ВУЗ
№75248. Матрица линейного оператора в базисе (e1, e2, e3) имеет вид.....
просмотры: 335 | математика ВУЗ
№75247. написать программу в эксель, которая высчитывает сумму всех чисел, входящих в строку. например строка: bbs40hbv90 ответ: 130
просмотры: 208 | информатика 10-11
№75246. . 29. На відрізку АВ позначено точку М так, що AM :MB = 1:3 .

Знайдіть координати:

а) точки М, якщо A(- 7; 4; 0) , B(5; 0; - 8)

б) точки В, якщо A(2; - 9; 6) ,
M(1; - 6; 4)
просмотры: 309 | математика 10-11
№75245. Выяснить знакоопределенность квадратичной формы L = 3x1^2 - 2x1x2 - 2x1x3 + 4x2^2 + 2x2x3 + x3^2
просмотры: 171 | математика ВУЗ
№75244. Даны вершины треугольника ABC. Найти:
1) уравнение высоты, опущенной из вершины A ;
2) точку пересечения высоты ha и стороны BC;
3) точку пересечения медиан треугольника ABC

просмотры: 519 | математика ВУЗ
№75243. Задача 2. Даны точки А(2;2;-1), В(-3;1;0), ! С(1;2;1), D(2;0;-3). Найти: 1) — общее уравнение плоскости АВС; 2) координаты нормального вектора плоскости АВС; 3) — расстояние от точки Р до плоскости АВС; 4) — канонические уравнения прямой АВ; 5) — канонические уравнения прямой, проходящей через точку Э) параллельно прямой АВ; 6) канонические уравнения прямой, проходящей через точку О перпендикулярно плоскости АВС.
просмотры: 305 | математика