№28366.
Вариант № 1
1. Указать предел интегрирования в равенствах для повторных интегралов в декартовой системе координат
2. Найти площадь фигур, ограниченных данными кривыми, с помощью двойного интеграла: y = sin x, y = 0, x = 0, x = π.
3. Вычислить объем области, ограниченной заданными поверхностями, с помощью тройного интеграла: x = 0, z = x + y, y = 0, y = 1, y = 3.
4. Вычислить криволинейный интеграл по заданному контуру интегрирования: ∮ (xdx + ydy) L: y = x; A(0;0), B(1;1)
5. Является ли векторное поле F = { y + z; x + z; x + y } потенциальным? Если да, найти его скалярный потенциал.
просмотры: 645 | предмет не задан класс не з