Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 32454 Найти уравнения касательной и нормали к...

Условие

Найти уравнения касательной и нормали к кривой
4x3 – 3xy2 + 6x2 – 5xy – 8y2 + 9x + 14 = 0 в точке M(–2, 3).

математика ВУЗ 1040

Решение

y`x= – (F`x/F`y)

F(x;y)=4x3–3xy2+6x2–5xy–8y2+9x+14

F`x=12x2–3y2+12x–5y+9
F`y=–6xy–5x–16y

y`_ (x) = – (12x2–3y2+12x–5y+9)/(–6xy–5x–16y)=

=(12x2–3y2+12x–5y+9)/(6xy+5x+16y)

y`(–2;3)=–9/2=–4/5

Уравнение касательной:

y – 3 =(–9/2)·( x +2) ⇒ у = (–9/2)х – 6

Уравнение нормали:

y – 3 =(2/9)·( x +2) ⇒ у = (2/9)x + (31/9)

Обсуждения

Написать комментарий