2) =3tg(x/2)|π/2–(π/3)=3tg(π/4)–3tg(π/6)=3–√3
3) =(2x3/2/(3/2)+x4/3/(4/3))|8/0=(4/3)·83/2+(3/4)·84/3=
=(4/3)·16√2 +(3/4)·24=64√2/3 +12
4) =(1/2)·2√2sinx+1|π/20=√2+1–√0+1=√3–1
5)
S= ∫3 –2(–x2+x+6)dx=(–x3/3)|3–2+(x2/2)|3–2+(6x)|3–2=–9+(8/3)+(9/2)–2+18+12=cчитайте