Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 58025 ...

Условие

Вычислить интегралы с помощью замены переменных:

∫∫G xy dx dy, G – область, ограниченная линиями xy=1, x+y=5/2.

математика ВУЗ 463

Решение

∫∫G xydxdy= ∫ 20,5 (∫2,5–x1/x xydy)dx= ∫ 20,5 (∫2,5–x1/x ydy)dx=


=∫ 20,5 (y2/2))|2,5–x1/x)dx=

=∫ 20,5 ((2,5–x)2/2)–(1/x)2/2)dx=

=∫ 20,5x·(1/2)·(6,25–5x+x2–(1/x2))dx=

=(1/2)∫ 20,5(6,25x–5x2+x3–(1/x))dx=

=(1/2)·(6,25·(x2/2)–5·(x3/3)+(x4/4)–ln|x|)|20,5=


=(1/2)·(6,25·(22/2)–5·(23/3)+(24/4)–ln|2|)– (1/2)·(6,25·(0,52/2)–5·(0,53/3)+(0,54/4)–ln|0,5|)=

=6,25–(20/3)+2–(1/2)ln2–(1/16)·6,25+(5/48)–(1/128)+(1/2)ln(1/2)=...



ln(1/2)=–ln2

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК