Составить уравнение плоскости, расположенной на расстоянии четырех единиц от плоскости 3x–6y–2z+8=0 и параллельно ей.
α: 3x–6y–2z+8=0 ⇒ d1=8 β : 3x–6y–2z+d2=0 d( α, β) =4 – расстояние между параллельными плоскостями ( см скрин) [m]4=\frac{|d_{2}-8|}{\sqrt{3^2+(-6)^2+(-2)^2}}[/m] [m]28=|d_{2}-8|[/m] ⇒ d2=–20 или d2=36 О т в е т. 3x–6y–2z–20=0 или 3x–6y–2z+36=0