y = arctg² ctg x, x₀ = π/6.
u=(arctg(ctgx))2
поэтому
y`=2arctg(ctgx)·(arctg(ctgx))`=
т.к (arctgt)`=[m]\frac{t`}{1+t^2}[/m], то
=2arctg(ctgx)·[m]\frac{(ctgx)`}{1+ctg^2x}[/m]
т.к (ctgx)`= – [m]\frac{1}{sin^2x}[/m]
=–2arctg(ctgx)·[m]\frac{1}{(1+ctg^2x)\cdot sin^2x}[/m]
т.к 1+ctg2x=[m]\frac{1}{sin^2x}[/m]
=–2arctg(ctgx)
y`(π/6)=–2arctg(ctg(π/6))=–2arctg(√3)=–2·(π/3)=–2π/3
О т в е т. –2π/3