у`=ex3·(x3)`=3x2·ex3
y``=(3x2)`·ex3+(3x2)·(ex3)`=6x·(ex3)+3x2·3x2·ex3=
=(6x+9x4)·ex3
y```=(6x+9x4)`·ex3+(6x+9x4)·(ex3)`=
=(6+9·4x3)`·ex3+(6x+9x4)·(ex3)·(3x2)=
=(6+36x3+18x3+27x6)·ex3=
=(6+54x3+27x6)·ex3.
2
x`t=e2t·2
y`t=e3t·3
y`x=[m]\frac{y`_{t}}{x`_{t}}=\frac{3e^{3t}}{2e^{2t}}=\frac{3}{2}e^{t}[/m]
y``xx=[m]\frac{(y`_{x})`_{t}}{(x`_{t})`_{t}}=\frac{3}{2}\frac{e^{t}}{4e^{2t}}=\frac{3}{8e^{t}}[/m]
3.
(x3+y3–3axy)`=0
3x2+3y2·y`–3ay–3ax·y`=0
(3y2–3ax)·y`=3ay–3x2
y`=[m]\frac{3ay-3x^2}{3y^2-3ax}[/m]