x_(o)
x_(o)+ Δx
f(x_(o))=2+x_(o)
f(x_(o)+ Δx)=2+x_(o)+ Δx
Δf= f(x_(o)+ Δx)-f(x_(o)=2+x_(o)+ Δx-(2+x_(o))=2+x_(o)+ Δx-2-x_(o)= Δx
f`(x_(o))=[m]\lim_{\Delta x \to 0}\frac{\Delta f}{\Delta x}=\lim_{\Delta x \to 0}\frac{\Delta x}{\Delta x}=1[/m]
в любой точке, в том числе и х_(o)=11
x_(o)=11
x_(o)+ Δx=11+ Δx
f(11)=2+11=13
f(11+ Δx)=2+11+ Δx=13+ Δx
Δf= f(x_(o)+ Δx)-f(x_(o)=f(11)-f(11+ Δx)=2+11+ Δx-(2+11)=13+ Δx-13= Δx
f`(11)=[m]\lim_{\Delta x \to 0}\frac{\Delta f}{\Delta x}=\lim_{\Delta x \to 0}\frac{\Delta x}{\Delta x}=1[/m]
1.2
x_(o)
x_(o)+ Δx
f(x_(o))=[m]3^{x_{o}sin\frac{1}{x_{o}}}[/m]
f(x_(o)+ Δx)=[m]3^{(x_{o}+\Delta x)sin\frac{1}{x_{o}+\Delta x}}[/m]
Δf= f(x_(o)+ Δx)-f(x_(o))=[m]3^{(x_{o}+\Delta x)sin\frac{1}{x_{o}+\Delta x}}-3^{x_{o}sin\frac{1}{x_{o}}}=[/m]
[m]=3^{x_{o}\cdot sin\frac{1}{x_{o}+\Delta x}}\cdot 3^{\Delta x \cdot sin\frac{1}{x_{o}+\Delta x}}-3^{x_{o}sin\frac{1}{x_{o}}}=[/m]