xo
xo+ Δx
f(xo)=2+xo
f(xo+ Δx)=2+xo+ Δx
Δf= f(xo+ Δx)–f(xo=2+xo+ Δx–(2+xo)=2+xo+ Δx–2–xo= Δx
f`(xo)=[m]\lim_{\Delta x \to 0}\frac{\Delta f}{\Delta x}=\lim_{\Delta x \to 0}\frac{\Delta x}{\Delta x}=1[/m]
в любой точке, в том числе и хo=11
xo=11
xo+ Δx=11+ Δx
f(11)=2+11=13
f(11+ Δx)=2+11+ Δx=13+ Δx
Δf= f(xo+ Δx)–f(xo=f(11)–f(11+ Δx)=2+11+ Δx–(2+11)=13+ Δx–13= Δx
f`(11)=[m]\lim_{\Delta x \to 0}\frac{\Delta f}{\Delta x}=\lim_{\Delta x \to 0}\frac{\Delta x}{\Delta x}=1[/m]
1.2
xo
xo+ Δx
f(xo)=[m]3^{x_{o}sin\frac{1}{x_{o}}}[/m]
f(xo+ Δx)=[m]3^{(x_{o}+\Delta x)sin\frac{1}{x_{o}+\Delta x}}[/m]
Δf= f(xo+ Δx)–f(xo)=[m]3^{(x_{o}+\Delta x)sin\frac{1}{x_{o}+\Delta x}}-3^{x_{o}sin\frac{1}{x_{o}}}=[/m]
[m]=3^{x_{o}\cdot sin\frac{1}{x_{o}+\Delta x}}\cdot 3^{\Delta x \cdot sin\frac{1}{x_{o}+\Delta x}}-3^{x_{o}sin\frac{1}{x_{o}}}=[/m]