x → ∞ ((2x+5)/(2x–3))5x–4 Найти пределы функций, не пользуясь правилом Лопиталя.
[m]\lim_{x \to\infty}(\frac{2x+5}{2x-3})^{5x-4}=\lim_{x \to\infty}(\frac{\frac{2x+5}{x}}{\frac{2x-3}{x}})^{5x}\cdot(\frac{\frac{2x+5}{x}}{\frac{2x-3}{x}})^{-4} =[/m]
Предел произведения равен произведению пределов.
[m]\lim_{x \to\infty}(\frac{\frac{2x+5}{x}}{\frac{2x-3}{x}})^{-4}=1^(-4)=1[/m]
[m]\lim_{x \to\infty}(\frac{\frac{2x+5}{2x}}{\frac{2x-3}{2x}})^{5x}=
=\lim_{x \to\infty}\frac{(1+\frac{5}{2x})^{5x}}{(1-\frac{3}{2x})^{5x}}=[/m]
[m]\lim_{x \to\infty}\frac{((1+\frac{5}{2x})^{\frac{2x}{5}})^{\frac{25}{2}}}{((1-\frac{3}{2x})^{-\frac{2x}{3}})^{\frac{-15}{2}}}=\frac{e^{\frac{25}{2}}}{e^{\frac{-15}{2}}}=e^{\frac{25}{2}-(-\frac{15}{2})}=e^{20}[/m]