Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 38086 Найти производную функции a) y =...

Условие

Найти производную функции

a) y = (ex+lnx)/(ex–lnx)

б) y = √x(x5+√x–2)

математика ВУЗ 1793

Решение

a)
Производная частного
(u/v)`=(u`·v–u·v`)/v2

y`=(ex+lnx)`·(ex–lnx)–(ex+lnx)·(ex–lnx)`/(ex–lnx)2

y`= ((ex+(1/x))·(ex–lnx) – (ex+lnx)·(ex–(1/x)) )/(ex–lnx)2

y`= ((ex)2+(ex/x)–ex·lnx–(lnx/x)–(ex)2–ex·lnx+ex/x+lnx/x )/(ex–lnx)2

y`= ((2ex/x)–2ex·lnx)/(ex–lnx)2 – о т в е т.

б)
Производная произведения

(u·v)`=u`·v+u·v`

y`=(√x)`·(x5+√x–2)+√x·((x5+√x–2))`=

=(1/(2·√x))·(x5+√x–2)+√x·((5x4+(1/2√x)–0))=


=(x5+√x–2+10√x · x4+√x)/(2·√x)=

= (x5+10√x·x4+2√x–2)/(2·√x) – о т в е т.

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК