y`=(x/2)`·√x2+k+(x/2)·(√x2+k)`+(k/2)·(x+√x2+k)`/(x+√x2+k);
y`=(1/2)·√x2+k + (x/2) · ((2x)/(2√x2+k)) + (k/2)· (1/√x2+k);
y`= (x2+k+1)/(2·√x2+k)
б)
y`=3sin22x·(sin2x)`–3cos22x·(cos2x)`=
=3sin22x·(cos2x)·2–3cos22x·(–sin2x)·2=
=6sin2x·cos2x·(sin2x+cos2x)
y`(π/8)=6·sin(π/4)·cos(π/4)·(sin(π/4)+cos(π/4))=
=6·((√2)/2)·((√2)/2)·((√2)/2 + (√2)/2)=
= 3√2