Тема: «Тригонометрические уравнения»
Вариант № 2
Решить уравнения:
1. 2cosx + √3 = 0
2. sin3x = √3/2
3. cos(x/2) = √3/2
4. ctg(x – π/4) = 1
5. 2sinxcosx – √2sinx = 0
6. 2sin²x – √3sinx = 0
cosx=–√3/2
х= ± arccos(–√3/2) +2πn, n ∈ Z
х= ±(π– arccos(√3/2)) +2πn, n ∈ Z
х= ±(π– (π/6)) +2πn, n ∈ Z
x= ± (5π/6) +2πn, n ∈ Z
2.
3x=t
sint=√3/2
t=(–1)k·arcsin(√3/2) + πk, k ∈ Z
t=(–1)k·(π/3) + πk, k ∈ Z
3x=(–1)k·(π/3) + πk, k ∈ Z
x=(–1)k·(π/9) + (π/3)·k, k ∈ Z
3.
(х/2)= ± arccos(√3/2) +2πn, n ∈ Z
(х/2)= ±(π/6) +2πn, n ∈ Z
x=±(2·π/6) +2·2πn, n ∈ Z
x= ±(π/3) +4πn, n ∈ Z
4.
x–(π/4)=arcctg1+πn, n ∈ Z
x–(π/4)=(π/4)+πn, n ∈ Z
x=(π/4)+(π/4)+πn, n ∈ Z
x=(π/2)+πn, n ∈ Z
5.
sinx·(2cosx–√2)=0
sinx=0 или 2cosx–√2=0
sinx=0 ⇒ x=πk, k ∈ Z
cosx=√2/2 ⇒ ± arccos(√2/2) +2πn, n ∈ Z
x=±(π/4)+2πn, n ∈ Z
6.
sinx·(2sinx–√3)=0
sinx=0 или 2sinx–√3=0
sinx=0 ⇒ x=πk, k ∈ Z
sinx=√3/2 ⇒ (–1)k·arcsin(√3/2) + πk, k ∈ Z
x= (–1)k·(π/3) + πk, k ∈ Z