= ∫ 10( ∫ x3–∛x( 18x2y2+32x3y3)dy=
=∫ 10(18x2·(y3/3) + 32x3·(y4/4))|y=x3y=–∛x dx=
=∫ 10(6x2·((x3)3–(–∛x)3) +8x3·(x34 – (– ∛x)4)dx=
=∫ 10(6x2·(x9+x) +8x3·(x12 – ∛(x4))dx=
=∫ 10(6x11+6x3+8x15 – 8x13/3)dx=
=(6·(x12/12) +6·(x4/4)+8·(x16/16 –8·(x16/3/(16/3))|10=
=2·1+(3/2)·1+(1/2)·1–(3/2)·1=5/2