✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 33478

УСЛОВИЕ:

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

1.
y`=(5x^7-2x^3-∛x+3x^(-2)+15)`=
производная суммы ( разности) равны сумме ( разности) производных;
константу можно выносить за знак производной
(С)`=0
[b](x^( α ))`= α *x^( α -1)[/b]

=5*7x^(6) -2*3*x^2 -(1/3)x^(-2/3)+3*(-2)*x^(-3)+0=
=35x^6-6x^2-1/(3∛(x^2))-6/(x^3);
2
[b](x^( α ))`= α *x^( α -1)[/b]
y`=2*(x^(-2)/(-2))-3*(x^(-3)/(-3))+4*(x^(-4)/(-4))-(6/5)*(x^(-5)/(-5))=

=(-1/x)+(1/x^3)-(1/x^4)+(6/25)*(1/x^5)

3.
a^(m)*a^(n)=a^(m+n)
[b](x^( α ))`= α *x^( α -1)[/b]

y=3*x^(1/4)=10x^(11/3)-5x^(13/5)-4x^(-3)
y`=3*(1/4)*x^(-3/4)+10*(11/3)x^(8/3)-5*(13/5)x^(8/5)-4*(-3)x^(-4)
y`=(3/4)*(1/∛(x^4))+(110/3)x^2∛(x^2) -13x*(x^(3/5))+12/(x^4)

4. y=u*v
y`=u`*v+u*v`
y`=(5cosx-3tgx)`*sinx+(5cosx-3tgx)*(sinx)`=
=(5*(-sinx)-3*(1/cos^2x))*sinx+(5cosx-3tgx)*cosx

5.
y=(u/v)
y`=(u`*v-u*v`)/v^2

y`=(6ctgx)`*(sinx-2x)-6ctgx*(sinx-2x)`)/(sinx-2x)^2

y`=(-6/sin^2x)*(sinx-2x) - 6ctgx*(cosx-2))/(sinx-2x)^2

6.
y=cosu, u=5х+3
y`=(cosu)`*u`

y`=3*(-sin(5x+3))*(5x+3)`
y`=-15sin(5x+3)

7.
y=u^3
u=kn(arctgx-2x^3)

y`=3u^2*u`

y`=3ln^(2)(arctgx-2x^3) * (arctgx-2x^3)`;
y`=3ln^2(arctgx-2x^3) * (1/(1+x^2) - 6x^2)

8.
y`=(1/3)*(cos2x)*(2x)`+ (1/3)*(1/ctg2x)*(ctg2x)`

y`=(2/3)cos2x + (2/3)*(1/ctg2x)*(-1/sin^22x)

9.
y=log_(2)(1-tg6x) - log_(2)(1+tg6x)

(log_(2)u)`=(1/u)*(u`)*(1/ln2) - cм. формула 7

y`=(1/ln2)*(1/(1-tg6x))*(1-tg6x)`- (1/ln2)*(1/(1+tg6x))*(1+tg6x)`

y`=(1/ln2)*(1/(1-tg6x))*(-1/cos^26x)*(6x)` - (1/ln2)*(1/(1+tg6x))*(1/cos^2x)*(6x)`
(6x)`=6

y`=(6/ln2)*(1/cos^2x) * [b]((-1-tg6x-1+tg6x)/(1-tg^26x))[/b]=

=(6/ln2)*(1/cos^2x) * [b]((-2)/(1-tg^26x))[/b]

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

Добавил marinabulka, просмотры: ☺ 38 ⌚ 2019-02-11 20:50:21. математика 1k класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Лучший ответ к заданию выводится как основной

Написать комментарий

Последнии решения
(прикреплено изображение) [удалить]
✎ к задаче 33674
Полная величина выплаты находим по формуле: В=s*(1+ r*(n+ 1)/200). где s-кредит,
r-годовая ставка, n-сколько лет. В нашем случае s=10 млн. руб, r=10%, n=5 лет.
в=10*(1+ 10*6/200)=10*1,3=13.
Ответ. 13.
[удалить]
✎ к задаче 3326
АН=KD=(20-10)/2=5
По теореме Пифагора
BH^2+13^2-5^2=169-25=144
BH=12

S_(трапеции)=(ВС+AD)*BH/2=(10+20)*12/2=180
(прикреплено изображение) [удалить]
✎ к задаче 33671
vector{a}+3vector{b}-4vector{c}=(8+3*0-4*(-5); 2+3*7-4*0;-3+3*4-4*4)=

=(28; 23; -7)
|vector{a}+3vector{b}-4vector{c}|=sqrt(28^2+23^2+(-7)^2)=

=sqrt(784+529+49)=sqrt(1362)
[удалить]
✎ к задаче 33672
∠ A=38° ;  ∠ B= 93°  
Сумма углов треугольника АВС равна 180 градусов.
Значит
  ∠ C = 180° - (38° +93° ) = 49°  
Вписанный угол измеряется половиной дуги, на которую он опирается,
значит
∪   AB = 2·49° = 98°  
∪  AC = 2·93°   = 186 °       
 
∠АDС = 1/2· (∪AC -∪AB) = 1/2·( 186°   - 98°  ) = 93°   - 49°   = 44°
 
О т в е т.∠АDС = 44°

(прикреплено изображение) [удалить]
✎ к задаче 33670