y`=(5x7–2x3–∛x+3x–2+15)`=
производная суммы ( разности) равны сумме ( разности) производных;
константу можно выносить за знак производной
(С)`=0
(x α )`= α ·x α –1
=5·7x6 –2·3·x2 –(1/3)x–2/3+3·(–2)·x–3+0=
=35x6–6x2–1/(3∛(x2))–6/(x3);
2
(x α )`= α ·x α –1
y`=2·(x–2/(–2))–3·(x–3/(–3))+4·(x–4/(–4))–(6/5)·(x–5/(–5))=
=(–1/x)+(1/x3)–(1/x4)+(6/25)·(1/x5)
3.
am·an=am+n
(x α )`= α ·x α –1
y=3·x1/4=10x11/3–5x13/5–4x–3
y`=3·(1/4)·x–3/4+10·(11/3)x8/3–5·(13/5)x8/5–4·(–3)x–4
y`=(3/4)·(1/∛(x4))+(110/3)x2∛(x2) –13x·(x3/5)+12/(x4)
4. y=u·v
y`=u`·v+u·v`
y`=(5cosx–3tgx)`·sinx+(5cosx–3tgx)·(sinx)`=
=(5·(–sinx)–3·(1/cos2x))·sinx+(5cosx–3tgx)·cosx
5.
y=(u/v)
y`=(u`·v–u·v`)/v2
y`=(6ctgx)`·(sinx–2x)–6ctgx·(sinx–2x)`)/(sinx–2x)2
y`=(–6/sin2x)·(sinx–2x) – 6ctgx·(cosx–2))/(sinx–2x)2
6.
y=cosu, u=5х+3
y`=(cosu)`·u`
y`=3·(–sin(5x+3))·(5x+3)`
y`=–15sin(5x+3)
7.
y=u3
u=kn(arctgx–2x3)
y`=3u2·u`
y`=3ln2(arctgx–2x3) · (arctgx–2x3)`;
y`=3ln2(arctgx–2x3) · (1/(1+x2) – 6x2)
8.
y`=(1/3)·(cos2x)·(2x)`+ (1/3)·(1/ctg2x)·(ctg2x)`
y`=(2/3)cos2x + (2/3)·(1/ctg2x)·(–1/sin22x)
9.
y=log2(1–tg6x) – log2(1+tg6x)
(log2u)`=(1/u)·(u`)·(1/ln2) – cм. формула 7
y`=(1/ln2)·(1/(1–tg6x))·(1–tg6x)`– (1/ln2)·(1/(1+tg6x))·(1+tg6x)`
y`=(1/ln2)·(1/(1–tg6x))·(–1/cos26x)·(6x)` – (1/ln2)·(1/(1+tg6x))·(1/cos2x)·(6x)`
(6x)`=6
y`=(6/ln2)·(1/cos2x) · ((–1–tg6x–1+tg6x)/(1–tg26x))=
=(6/ln2)·(1/cos2x) · ((–2)/(1–tg26x))