Умножаем и числитель и знаменатель на
√3+x+x2+√9–2x+x2
получаем
(√3+x+x2+√9–2x+x2)·(√3+x+x2–√9–2x+x2)/(x2–3x+2)·(√3+x+x2+√9–2x+x2)=
по формуле (a–b)·(a+b)=a2–b2
=(3+x+x2–(9–2x+x2))/((x2–3x+2)·(√3+x+x2+√9–2x+x2))
=(3x–6)/((x–2)(x–1)·(√3+x+x2+√9–2x+x2))
сокращаем на (х–2)
limx→2(√3+x+x2+√9–2x+x2)/(x2–3x+2)=
=limx→23/((x–1)·(√3+x+x2+√9–2x+x2))= 3/((2–1)·(3+3))=3/6=1/2