\sqrt{-i}=cos(\frac{(-\frac{π}{2}+2πk)}{2})+isin(\frac{(-\frac{π}{2}+2πk)}{2}), k ∈ Z
k=0
z_{o}=cos\frac{(-\frac{π}{2})}{2}+isin \frac{(-\frac{π}{2})}{2}
z_{o}=cos(-\frac{π}{4})+isin(-\frac{π}{4}) ⇒
z_{o}=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}
k=1
z_{1}=cos\frac{(-\frac{π}{2}+2π)}{2}+isin \frac{(-\frac{π}{2}+2π)}{2}
z_{1}=cos\frac{3π}{4}+isin\frac{3π}{4} ⇒
z_{1}=-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}