Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 67766 Функцию f(x)=2x-1 B а) в ряд косинусов;...

Условие

Функцию f(x)=2x–1 B а) в ряд косинусов; 6) в ряд синусов.

математика ВУЗ 292

Решение

Функция y=f(x) задана на (0;1)

a)
Продолжить функцию на (–1;1) чётным образом, тогда получим разложение в ряд Фурье по косинусам:

f(x) ∼ \frac{a_{o}}{2}+ ∑_{1}^{ ∞}a_{n} cos\frac{nπx}{l}

l=1

f(x) ∼\frac{a_{o}}{2}+ ∑_{1}^{ ∞}a_{n} cosnπx

b_{n}=0


a_{o}=\frac{2}{1} ∫_{0} ^{1}(2x-1)dx=2 (2\frac{x^2}{2}-x)|_{0} ^{1}=0

n ≥ 1

a_{n}=\frac{2}{1} ∫_{0} ^{1}(2x-1)cos\frac{nπx}{2}dx=4∫_{0} ^{1}xcos(nπx)dx-2∫_{0} ^{2}cos(nπx)dx=

Первый по частям, второй табличный

б)
Продолжить функцию на (–1;1) нечётным образом, тогда получим разложение в ряд Фурье по синусам:

f(x) ∼ ∑_{1}^{ ∞}b_{n} sin\frac{nπx}{l}

l=1

f(x) ∼+ ∑_{1}^{ ∞}b_{n} sinnπx

a_{n}=0

b_{n}=\frac{2}{1} ∫_{0} ^{1}(2x-1)sin\frac{nπx}{2}dx=4∫_{0} ^{1}xsin(nπx)dx-2∫_{0} ^{2}sin(nπx)dx=

Первый по частям, второй табличный




...

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК