Processing math: 100%
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 65330 при каком значении параметра а точки...

Условие

при каком значении параметра а точки А(1, 3, 1), B(2,3,0), С(–1,2,1) и D (a+2, 4, 0) лежат в одной плоскости?

математика ВУЗ 2752

Решение

Уравнение плоскости имеет вид

px+qy+rz+t=0

Подставляем координаты точек

А(1, 3, 1)

p\cdot 1+q\cdot 3+r\cdot 1+t=0

B(2,3,0)

p\cdot 2+q\cdot 3 +r\cdot 0+t=0

С(–1,2,1)

p\cdot (-1)+q\cdot 2+r\cdot 1+t=0

D (a+2, 4, 0)

p\cdot (a+2)+q\cdot 4+r\cdot 0+t=0


Все четыре условия выполняются одновременно.

Решаем систему уравнений:

\left\{\begin {matrix}p+3q+r+t=0\\2p+3q+t=0\\-p+2q+r+t=0\\p(a+2)+4q+t=0\end {matrix}\right.

\left\{\begin {matrix}t=-p-3q-r\\2p+3q+(-p-3q-r)=0\\-p+2q+r+(-p-3q-r)=0\\p(a+2)+4q+(-p-3q-r)=0\end {matrix}\right.

\left\{\begin {matrix}t=-p-3q-r\\p-r=0\\-2p-q=0\\p(a+1)+q-r=0\end {matrix}\right.

\left\{\begin {matrix}t=-p-3q-r\\p=r\\q=-2p ⇒ q=-2r\\r(a+1)-2r-r=0\end {matrix}\right.

\left\{\begin {matrix}t=-p-3q-r\\p=r\\q=-2p ⇒ q=-2r\\(a+1)-3=0\end {matrix}\right.

(a+1)–3=0

a=2

2 способ

А(1, 3, 1), B(2,3,0), С(–1,2,1) и D (a+2, 4, 0)

Значит, векторы
AB=(2–1;3–3;0–1)=(1;0;–1)
AC=(–1–1;2–3;1–1)=(–2;–1;0)
AD=(a+2–1;4–3;0–1)=(a+1;1;–1)
лежат в одной плоскости, т.е. компланарны.

Условием компланарности является равенство нулю определителя третьего порядка, составленного из координат этих векторов.


\begin {vmatrix} 1&0&-1\\-2&-1&0\\a+1&1&-1\end {vmatrix}=0

Раскрываем определитель, получаем уравнение:

1+2–(a+1)=0

из которого

a=2




Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК