Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 63810 Знакотождественные множители в...

Условие

Знакотождественные множители в логарифмических неравенствах
необходимо решить неравенства хелп ми

математика 10-11 класс 480

Решение

1)
ОДЗ:
x+2 >0 ⇒ x>–2
log11(x+2) ≠ 1 ⇒ x ≠ –1


log11(x–2) заменим на (11–1)·(x+2–1) =12(x+1) ( см. скрин. третья строчка)

12 – положительное число, не влияет на знак неравенства.

Получаем неравенство:

[m]\frac{2x^2-5x+2}{x+1} ≤ 0[/m]

Решаем методом интервалов

Нули числителя:

2x2–5x+2=0
D=25–16=9
x1=1/2; x2=2

(–2) _–____ (–1) _____+__ [1/2] ____–_____ [2] ____+____

О т в е т. (–2;1) U[1/2; 2]


2)[m]\frac{log_{3}(8x^2-11x+4)}{log_{3}x}<2[/m]

ОДЗ:
8x2–11x+4 >0 при любом х, так как D=121–4·8·4=121–128 <0

x>0

ОДЗ: x >0

Сравниваем неравенство с нулем:

[m]\frac{log_{3}(8x^2-11x+4)}{log_{3}x}-2<0[/m]

По формуле перехода к другому основанию: [m] log_{b}a=\frac{log_{c}a}{log_{c}b}[/m] справа налево


[m]log_{x}(8x^2-11x+4)-2log_{x}x<0[/m]

[m]log_{x}(8x^2-11x+4)-log_{x}x^2<0[/m]

заменим ( см. скрин. первая строчка)

[m](x-1)\cdot (8x^2-11x+4-x^2) <0[/m]

[m](x-1)\cdot (7x^2-11x+4) <0[/m]

D=121–4·7·4=9

[m](x-1)\cdot (7x-4)\cdot (x-1) <0[/m]

[m](x-1)^2\cdot (7x-4) <0[/m]

____–___ (4/7) ___+___ (1) ___+___

С учетом ОДЗ

получаем ответ (0; 4/7)


3)
ОДЗ:
x2–5x >0 ⇒ x <0 или x >5
x2>0 ⇒ x ≠ 0
log_{5}x2 ≠ 0 ⇒ x2 ≠ 1 ⇒ x ≠ ± 1

x ∈ (– ∞ ;–1)U(–1;0) U (5;+ ∞ )

[m]\frac{2log_{5}(x^2-5x)}{log_{5}x^2}-1 ≤ 0[/m]

[m]\frac{log_{5}(x^2-5x)^2}{log_{5}x^2}-1 ≤ 0[/m]

По формуле перехода к другому основанию: [m] log_{b}a=\frac{log_{c}a}{log_{c}b}[/m] справа налево


[m]\log_{x^2}(x^2-5x)^2-log_{x^2}x^2 ≤ 0[/m]

Замена сложных множителей ( см. таблица, строка первая)


[m](x^2-1)\cdot ( (x^2-5x)^2-x^2) ≤ 0[/m]

[m](x-1)(x+1)\cdot (x^2-5x-x)(x^2-5x+x) ≤ 0[/m]

[m](x-1)(x+1)\cdot (x^2-6x)(x^2-4x) ≤ 0[/m]

[m](x-1)(x+1)\cdot x^2 (x-6)(x-4) ≤ 0[/m]

___+__ [–1] ___–__ [ 0] _–__ [1] __+_____ [4] _____–__ [6] ___+____

C учетом ОДЗ : x ∈ (– ∞ ;–1)U(–1;0) U (5;+ ∞ )получаем ответ

[–1;0)U(5;6]


4)
ОДЗ:
x–1 >0 ⇒ x>1



log0,3(x–2) заменим на (0,3–1)·(x–1–1) =–0,7(x–2) ( см. скрин. третья строчка)


Получаем неравенство:

[m] (8-x)(x+4)\cdot (-0,7(x-2))≥ 0[/m]

[m] (x-8)(x+4)\cdot (x-2)≥ 0[/m]

Решаем методом интервалов


[–2] ___+___ [2] ____–_____ [8] ____+____

С учетом ОДЗ получаем ответ

О т в е т. (1;2] U[8; + ∞ )

Обсуждения

Написать комментарий

Категория

Меню

Присоединяйся в ВК