Z = (1–i)7 / (1+1)13
Представим число в тригонометрической форме (см. скрин 1 и 2)
1–i=√2·(cos(–π/4)+isin(–π/4))
(1–i)^{7}=(√2)7·(cos(–7π/4)+isin(–7π/4))=8√2·(cos(π/4)+isin(π/4))
=8·√2(√2/2)+i·√2/2)=8·(1+i)
1+i=√2·(cos(π/4)+isin(π/4))
(1+i)13=(√2)13·(cos(13π/4)+isin(13π/4))=64√2·((cos(5π/4)+isin(5π/4))=64√2·((cos(5π/4)+isin(5π/4))=
=64√2·(–√2/2)–i·√2/2)=64·(–1–i)=–64(1+i)
Теперь делим
(1–i)6/(1+i)13=8(1+i)/(–64·(1+i))=–1/8