tg(x/2)=t ⇒ x/2=arctgt
x=2arctgt
x=2dt/(1+t2)
sinx=2t/(1+t2); cosx=(1–t2)/(1+t2);
1+sinx+cosx=1+ (2t/(1+t2))+((1–t2)/(1+t2))=(1+t2+2t+1–t2)/(1+t2)=(2+2t)/(1+t2)
(1+sinx+cosx)2=((2+2t)/(1+t2))2
dx/(1+sinx+cosx)2=(1/2)(1+t2)dt/(1+t)2
x=0 ⇒ t=0
x=π/2 ⇒ t=1
∫0 1(1/2)(1+t2)2dt/(1+t)2 – неправильная дробь
выделяем целую часть,
∫0 1(1/2)(1+t2)dt/(1+t)2 =(1/2)∫0 1(1+2t+t2–2t)/(1+t)2dt=
=(1/2)∫0 1 ( 1 – (2t)/(1+t)2)dt=(1/2)∫0 1 dt– ∫0 1(t/(1+t)2)dt=
=(1/2)(t)|0 1 –∫0 1(t+1–1/(1+t)2)dt=
=(1/2)–∫0 1dt/(1+t)dt +∫0 1dt/(1+t)2 =
=(1/2)–(ln|1+t|)|0 1–(1/(1+t))|0 1=
=(1/2)–ln2–(1/2)+1=1–ln2