Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 62168 ...

Условие

Решить интеграл ∫^(π/2)_0 (dx)/((1 + sin x + cos x)^2) .

математика ВУЗ 358

Решение

Тригонометрическая подстановка


tg(x/2)=t ⇒ x/2=arctgt

x=2arctgt

x=2dt/(1+t^2)

sinx=2t/(1+t^2); cosx=(1-t^2)/(1+t^2);

1+sinx+cosx=1+ (2t/(1+t^2))+((1-t^2)/(1+t^2))=(1+t^2+2t+1-t^2)/(1+t^2)=(2+2t)/(1+t^2)

(1+sinx+cosx)^2=((2+2t)/(1+t^2))^2


dx/(1+sinx+cosx)^2=(1/2)(1+t^2)dt/(1+t)^2

x=0 ⇒ t=0

x=π/2 ⇒ t=1

∫_(0) ^(1)(1/2)(1+t^2)^2dt/(1+t)^2 - неправильная дробь

выделяем целую часть,

∫_(0) ^(1)(1/2)(1+t^2)dt/(1+t)^2 =(1/2)∫_(0) ^(1)(1+2t+t^2-2t)/(1+t)^2dt=

=(1/2)∫_(0) ^(1) ( 1 - (2t)/(1+t)^2)dt=(1/2)∫_(0) ^(1) dt- ∫_(0) ^(1)(t/(1+t)^2)dt=

=(1/2)(t)|_(0) ^(1) -∫_(0) ^(1)(t+1-1/(1+t)^2)dt=

=(1/2)-∫_(0) ^(1)dt/(1+t)dt +∫_(0) ^(1)dt/(1+t)^2 =


=(1/2)-(ln|1+t|)|_(0) ^(1)-(1/(1+t))|_(0) ^(1)=


=(1/2)-ln2-(1/2)+1=[b]1-ln2[/b]

Написать комментарий

Категория

Меню

Присоединяйся в ВК