b>c ⇒ b–c >0
m^2_{c}=\frac{2a^2+2b^2-c^2}{4}
2b2–c2=b2+b2–c2=b2+(b–c)·(b+c) ⇒
m^2_{c}=\frac{2a^2+2b^2-c^2}{4}>\frac{2a^2+b^2+(b-c)(b+c)}{4}
m^2_{b}=\frac{2a^2+2c^2-b^2}{4}
2c2–b2=c2+c2–b2=c2+(c–b)·(c+b)=c2–(b–c)·(c+b)
m^2_{b}=\frac{2a^2+c^2-(b-c)(b+c)}{4}
2a2+b2+(b–c)(b+c)>2a2+c2–(b–c)(b+c)
m^2_{c}>m^2_{b} ⇒m_{c}>m_{b}