[m]\frac{3}{2} < \frac{a-2}{a+1}<3 [/m] или [m] \frac{a-2}{a+1}=-3[/m]
⇒ решаем систему и уравнение и находим а
[m]\left\{\begin {matrix} \frac{a-2}{a+1}<3\\\frac{a-2}{a+1} >\frac{3}{2} \end {matrix}\right.[/m]
[m]\left\{\begin {matrix} \frac{a-2}{a+1}-3<0\\\frac{a-2}{a+1} -\frac{3}{2} >0 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix} \frac{a-2-3a-3}{a+1}<0\\\frac{2a-4-3a-3}{2(a+1)} >0 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix} \frac{-2a-5}{a+1}<0\\\frac{-a-7}{2(a+1)} >0 \end {matrix}\right.[/m]
[m]\left\{\begin {matrix} a+1<0\\-2a-5 >0\\-a-7 <0 \end {matrix}\right.[/m] или [m]\left\{\begin {matrix} a+1>0\\-2a-5 <0\\-a-7 >0 \end {matrix}\right.[/m]
Вторая система не имеет решений.
⇒ [m](-7;-2,5)[/m]
[m] \frac{a-2}{a+1}=-3[/m] ⇒ [m] \frac{a-2}{a+1}+3=0[/m] ⇒ [m] \frac{a-2+3a+3}{2(a+1)}=0[/m] ⇒
[m] \frac{4a+1}{2(a+1)}=0[/m] ⇒ [m]a=-\frac{1}{4}[/m]
О т в е т. [m](-7;-2,5)[/m]U{[m]-\frac{1}{4}[/m]}