c·d=(2 a+3 b)·(–3 a+5 b)=
=2 a·(–3) a+3 b·(–3) a+2 a·5 b+3· b·5 b=
=–6 a· a–9 b· a+10 a· b+15 b·b=
по свойству скалярного произведения векторов:
=–6 a· a+ a· b+15 b·b=
=–6|a|·| a|·cos0+ |a|· |b|·cos(π/3)+15 |b|·|b}·cos0=
=–6·1·1·1+1·2·(1/2)+15·2·2·1=–6+1+60=55
б)
[c × d]=[(2· a+3· b) × (–3· a+5· b)]=
=[2· a × (–3)· a]+[3· b × (–3)· a]+[2 ·a × 5· b]+[3· b × 5 ·b]=
=–6 [a × a]–9 [b × a]+10[ a × b]+15[ b × b]=
по свойству векторного произведения векторов:
=–6 [a × a]–9 (–[a × b]+10[ a × b]+15[ b × b]=
=–6 [a × a]+19[a × b]+15[ b × b]
|[c × d]|=|–6|·|a|·| a|·sin0+ |a|· |b|·sin(π/3)+15 |b|·|b}·sin0=
=6·1·1·0+19·1·2·(√3/2)+15·2·2·0=19√3