cos(x/2)·sin(3x/2)+sin(x/2)·cos(3x/2)=4·sin2 (π+x)cos2 (π–x)
cos(x/2)·sin(3x/2)+sin(x/2)·cos(3x/2)=sin((3x/2)+(x/2))=sin2x
sin (π+x)=–sinx
sin2 (π+x)=(–sinx)2=sin2x
cos (π–x)=–cosx
cos2 (π–x)=(–cosx)2=cos2x
4·sin2 (π+x)cos2 (π–x)=4sin2x ·cos2x=(2·sinx·cosx)2=sin22x
sin2x=sin22x ⇒
sin2x =0 или sin2x=1
2x =πk, k ∈ Z или 2x=(π/2)+2πn, n ∈ Z
x =(π/2)·k, k ∈ Z или x=(π/4)+πn, n ∈ Z
Указанному промежутку [π; 3π] принадлежат корни:
(π/2)·2=π
(π/2)·3=3π/2
(π/2)·4=2π
(π/2)·5=5π/2
(π/2)·6=3π
(π/4)+π=5π/4
(π/4)+2π=9π/4