Решите
а) 2· (cos2x)2 – 4·(cos2x)2 ·(sinx) 2=sin(2x–p/2)
б) [0;p]
sin(2x–(π/2))=–sin((π/2)–2x)=–cos2x
2cos22x–4cos22x·(1–cos2x)/2+cos2x=0
2cos22x–2cos22x+2cos32x+cos2x=0
2cos2x·(cos22x+1)=0
cos2x=0
2x=(π/2)+πk, k ∈ Z ⇒ x=(π/4)+(π/2)k, k ∈ Z
cos22x+1 >0
б)(π/4);(π/4)+(π/2)=(3π/4) – два корня, принадлежащих [0;π]