sin2x=(1–cos2x)/2
sin4x=(1–cos2x)2/4
(1–cos2x)2/4<0,5+cos2x
1–2cos2x+cos22x <2+4cos2x
cos22x–6cos2x–1<0
cos2x=t
D=36–4·=32
√32=4√2
t1=(–6–4√2)/2; t2=(–6+4√2)/2
t1=–3–2√2; t2=–3+2√2
⇒
–3–2√2<cos2x <–3+2√2
–(π–arccos(3–2√2)+2πk < 2x < π–arccos(3–2√2)+2πk, k ∈ Z
–(π/2)+(1/2)·arccos(3–2√2)+πk < x < (π/2)–(1/2) ·arccos(3–2√2)+πk, k ∈ Z