Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 59512 Дифференциральное уравнение...

Условие

Дифференциральное уравнение
y'''sin^4(x)=sin(2x)

математика ВУЗ 722

Решение

y'''sin^4(x)=sin(2x)

y'''=sin(2x)/sin^4x


sin2x=2*sinx*cosx

y```=2cosx/sin^3x

y``= ∫ y```dx= ∫ 2cosxdx/sin^3x=2 ∫ (sinx)^(-3)d(sinx)=2*(sinx)^(-2)/(-2)+C_(1)=(-1/sin^2x)+C_(1)

y`= ∫ y``dx= ∫ ((-1/sin^2x)+C_(1))dx=ctgx + C_(1)x+C_(2)

y= ∫ y`dx= ∫ (ctgx + C_(1)x+C_(2))dx=ln|sinx}+C_(1)(x^2/2)+C_(2)C_(3)


Написать комментарий

Категория

Меню

Присоединяйся в ВК