1+sinx+cosx = 2cos(x/2 – 45)
1+sinx=sin2(x/2)+2sin(x/2)·cos(x/2)+cos2(x/2)=(sin(x/2)+cos(x/2))2
cosx=cos2(x/2)–sin2(x/2)=(cos(x/2)–sin(x/2))·(cos(x/2)+sin(x/2))
Уравнение принимает вид:
(sin(x/2)+cos(x/2))2+(cos(x/2)–sin(x/2))·(cos(x/2)+sin(x/2))=√2·(cos(x/2)+sin(x/2))
(sin(x/2)+cos(x/2))2+(cos(x/2)–sin(x/2))·(cos(x/2)+sin(x/2))–√2·(cos(x/2)+sin(x/2))=0
Раскладываем на множители:
(cos(x/2)+sin(x/2))·(cos(x/2)+sin(x/2)+cos(x/2)–sin(x/2)–√2)=0
(cos(x/2)+sin(x/2))·(cos(x/2)+cos(x/2)–√2)=0
1)
cos(x/2)+sin(x/2)=0
tg(x/2)=–1
(x/2)=(π/4)+πm, m ∈ Z
x=(π/2)+2πm, m ∈ Z
2)
cos(x/2)+cos(x/2)–√2=0
cos(x/2)=√2/2
x/2= ± (π/4)+2πk, k ∈ Z
x=± (π/2)+4πk, k ∈ Z
О т в е т. (π/2)+2πm, m ∈ Z