Поэтапно. Сначала избавляемся от [m]\sqrt{5}=[/m]
[m]\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}+\sqrt{3}-\sqrt{5})}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{(\sqrt{2}+\sqrt{3})-(\sqrt{5})^2}=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{(2+2\sqrt{2}\cdot \sqrt{3}+3)-5}=[/m]
[m]=\frac{\sqrt{2}+\sqrt{3}-\sqrt{5}}{2\sqrt{6}}=\frac{(\sqrt{2}+\sqrt{3}-\sqrt{5})\cdot \sqrt{6}}{2\sqrt{6}\sqrt{6}}=\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}[/m]