[m]\frac{3^{x}}{4^{x}}dx=\frac{4^{y}}{3^{-y}}dy[/m]
[m]\frac{3^{x}}{4^{x}}dx=4^{y}\cdot 3^{y}dy[/m]
[m](\frac{3}{4})^{x}dx=(4\cdot 3)^{y}dy[/m]
Интегрируем:
[m] ∫ (\frac{3}{4})^{x}dx= ∫ 12^{y}dy[/m]
[m] \frac{ (\frac{3}{4})^{x}}{ln\frac{3}{4}}= \frac{12^{y}}{ln12} + С[/m] - общее решение
y(0)=0
[m] \frac{ (\frac{3}{4})^{0}}{ln\frac{3}{4}}= \frac{12^{0}}{ln12} + С[/m] ⇒ [m] \frac{ 1}{ln\frac{3}{4}}= \frac{1}{ln12} + С[/m]
[m]С= \frac{ 1}{ln\frac{3}{4}}- \frac{1}{ln12} [/m]