φ =± (π/12)+(π/2)*n, n ∈[b] Z[/b]
Найдем площадь одной части ( см. скрин 1) и умножим на 4
[m]S=4\cdot (S_{2}-S_{1})=4\cdot \frac{1}{2} ∫ ^{\frac{π}{12}}_{-\frac{π}{12}} (2cos4 φ)^2d φ -4\cdot \frac{1}{2} ∫ ^{\frac{π}{12}}_{-\frac{π}{12}}1^2d φ =[/m]
формула: [m]2cos^2 α =1+cos2 α [/m]
[m]=2\cdot ∫ ^{\frac{π}{12}}_{-\frac{π}{12}}4\cdot (1+cos8 φ )d φ -2\cdot ∫ ^{\frac{π}{12}}_{-\frac{π}{12}}d φ =(8 φ +sin8 φ-2 φ ) |^{\frac{π}{12}}_{-\frac{π}{12}}=(6φ +sin8 φ ) |^{\frac{π}{12}}_{-\frac{π}{12}}=π+2sin\frac{2π}{3}=π+1[/m]