(sin α –cos α )2–1+(1/2)sin2 α =1–sin2 α –1+(1/2)sin2 α =–(1/2)sin2 α
((sin α –cos α )2–1+(1/2)sin2 α)2=((–1/2)sin2 α )2=(1/4)sin22 α
((sin α –cos α )2–1+(1/2)sin2 α)2+(1/4)cos22 α =(1/4)sin22 α +(1/4)sin22 α=(1/4)·(sin2 2α+cos2 2α)=(1/4)·1=(1/4)
log2(((sin α –cos α )2–1+(1/2)sin2 α)2+(1/4)cos22 α )=log2(1/4)=–2– о т в е т