(sin α -cos α )^2-1+(1/2)sin2 α =1-sin2 α -1+(1/2)sin2 α =-(1/2)sin2 α
[b]([/b](sin α -cos α )^2-1+(1/2)sin2 α[b])[/b]^2=[b]([/b](-1/2)sin2 α [b])[/b]^2=(1/4)sin^22 α
[b]([/b](sin α -cos α )^2-1+(1/2)sin2 α[b])[/b]^2+(1/4)cos^22 α =(1/4)sin^22 α +(1/4)sin^22 α=(1/4)*(sin^2 2α+cos^2 2α)=(1/4)*1=(1/4)
log_(2)([b]([/b](sin α -cos α )^2-1+(1/2)sin2 α[b])[/b]^2+(1/4)cos^22 α )=log_(2)(1/4)=[red][b]-2[/b][/red]- о т в е т