sin α cos β = (sin (α + β) + sin (α – β)) / 2
∫ sin\frac{x}{2}\cdot cos\frac{x}{4} dx= ∫\frac{sin\frac{3x}{4}+sin\frac{x}{4}}{2}dx=
=\frac{1}{2} ∫ sin\frac{3x}{4}dx+\frac{1}{2} ∫ sin\frac{x}{4}dx=
d((3/4)x)=(3/4)dx и d(x/4)=(1/4)dx ⇒
dx=(4/3)d((3/4)x) и dx=4·d((1/4)x)
=\frac{1}{2} \cdot\frac{4}{3}∫ sin\frac{3x}{4}d\frac{3x}{4}+\frac{1}{2} \cdot 4∫ sin\frac{x}{4}d\frac{x}{4}=
=\frac{2}{3}\cdot (-cos\frac{3x}{4})+2 \cdot (-cos\frac{x}{4})+C