Возводим в квадрат:
[m](\vec{e_{1}})^2+(\vec{e_{2}})^2+(\vec{e_{3}})^2+2\vec{e_{1}}\cdot \vec{e_{2}}+2\vec{e_{1}}\cdot \vec{e_{3}}+2\vec{e_{2}}\cdot \vec{e_{3}}=0[/m]
Так как векторы единичные
[m](\vec{e_{1}})^2=|\vec{e_{1}}|=1[/m]; [m](\vec{e_{2}})^2=|\vec{e_{2}}|=1[/m]; [m](\vec{e_{3}})^2=|\vec{e_{3}}|=1[/m].
[m]2\cdot (\vec{e_{1}}\cdot \vec{e_{2}}+\vec{e_{1}}\cdot \vec{e_{3}}+\vec{e_{2}}\cdot \vec{e_{3}})=-3[/m]
[m]\vec{e_{1}}\cdot \vec{e_{2}}+\vec{e_{1}}\cdot \vec{e_{3}}+\vec{e_{2}}\cdot \vec{e_{3}}=-1,5[/m]