✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 551 Име­ет­ся 8 кар­то­чек. На них

УСЛОВИЕ:

Име­ет­ся 8 кар­то­чек. На них за­пи­сы­ва­ют по од­но­му каж­дое из чисел:


-11, 12, 13, -14, -15, 17, -18, 19.
Кар­точ­ки пе­ре­во­ра­чи­ва­ют и пе­ре­ме­ши­ва­ют. На их чи­стых сто­ро­нах за­но­во пишут по од­но­му из чисел:


-11, 12, 13, -14, -15, 17, -18, 19.
После этого числа на каж­дой кар­точ­ке скла­ды­ва­ют, а по­лу­чен­ные во­семь сумм пе­ре­мно­жа­ют.

а) Может ли в ре­зуль­та­те по­лу­чить­ся 0?

б) Может ли в ре­зуль­та­те по­лу­чить­ся 117?

в) Какое наи­мень­шее целое не­от­ри­ца­тель­ное число может в ре­зуль­та­те по­лу­чить­ся?

РЕШЕНИЕ:

а) Среди вось­ми дан­ных чисел нет про­ти­во­по­лож­ных. Зна­чит, сумма чисел на каж­дой кар­точ­ке на равна 0. По­это­му всё про­из­ве­де­ние не может рав­нять­ся 0.

б) Среди вось­ми дан­ных чисел пять нечётных. Зна­чит, на какой-то кар­точ­ке попадётся два нечётных числа, и их сумма чётная. По­это­му всё про­из­ве­де­ние чётно и не может рав­нять­ся 117.

в) Среди вось­ми дан­ных чисел пять нечётных. Зна­чит, хотя бы на двух кар­точ­ках с обеих сто­рон на­пи­са­ны нечётные числа, и сумма чисел на каж­дой из этих кар­то­чек чётная. По­это­му все про­из­ве­де­ние де­лит­ся на 4. Наи­мень­шее целое по­ло­жи­тель­ное число, де­ля­ще­е­ся на 4, - это 4. Оно по­лу­ча­ет­ся при сле­ду­ю­щем на­бо­ре пар чисел на кар­точ­ках:

(-11; 12), (12; -11), (13; -14), (-14; 13),


(-15; 17), (17; -15), ( -18; 19), (19; -18),

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

а) нет; б) нет; в) 4.

Добавил slava191, просмотры: ☺ 4959 ⌚ 01.02.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
См.фото (прикреплено изображение)
✎ к задаче 43615
P=mg/S=0,625*9,8/25*10^-4=2450 Па
✎ к задаче 43631
Вводим в рассмотрение гипотезы:
H_(1) - " из 1 в 2 переложили белый шар"
p(H_(1))=8/12
H_(2) - " из 1 в 2 переложили красный шар"
p(H_(2))=4/12
p(H_(1))+p(H_(2))=1
Гипотезы выбраны верно.

A- " из второй урны достали красный шар"
p(A/H_(1))=2/9 ( во второй 6 белых, 2 красных и переложили белый)
p(A/H_(2))=3/9

p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))=

=(8/12)*(2/9)+(4/12)*(3/9)= считаем самостоятельно
✎ к задаче 43616
По свойству плотности вероятности
∫ ^(+ ∞ )_(- ∞ )f(x)dx=1

Считаем интеграл от данной функции.

Так как функция задана тремя выражениями рассматриваем интеграл как сумму интегралов:


∫^(+ ∞)_(- ∞ )f(x)dx=

=∫^(0)_(- ∞ )[b]0[/b](x)dx+∫^(1)_(0)[b]a(x+10)[/b]dx+∫^(+ ∞ )_(1)[b]0[/b]dx=

=0+a*((x^2/2)+10x)|^(1)_(0)+0=

=a*((1/2)+10)=10,5a

10,5a=1 ⇒[b] a=2/21[/b]
✎ к задаче 43617
\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x-1}=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot(\frac{x+1}{x+3})^{-1} =

=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}=


\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}= 1^{-1}=1


\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}=\lim_{x \to\infty }(\frac{\frac{x+1}{x}}{\frac{x+3}{x}})^{4x}=

=\lim_{x \to\infty }\frac{(1+\frac{1}{x})^{x})^{4}}{(1+\frac{3}{x})^{x})^{4}}=\frac{e^{4}}{(e^{3})^{4}}=e^{4-12}=e^{-8}



✎ к задаче 43623