\lim_{x \to 0} \frac{\sin 5x}{\sqrt{x + 1} - 1}
2. 4.26. y = x/(x² – 1).
3. 4.13. y = (ln x)/x.
=lim_{ x→ 0}\frac{(sin5x)`}{(\sqrt{x+1}-1)`}=lim_{ x→ 0}\frac{(cos5x)\cdot (5x)`}{\frac{1}{2\sqrt{x+1}}\cdot (x+1)`-0}=lim_{ x→ 0}\frac{5\cdot (cos5x)}{\frac{1}{2\sqrt{x+1}}\cdot 1}=\frac{5\cdot 1}{\frac{1}{2\cdot \sqrt{0+1}}}=10
4.26